|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В основании четырёхугольной пирамиды SKLMN лежит параллелограмм KLMN . Известно, что плоскости треугольников SKM и SLN перпендикулярны друг другу. Найдите площадь грани NSK , если площади граней KSL , LSM и MSN равны соответственно 4, 6 и 7. Докажите, что каждое число a в треугольнике Паскаля, уменьшенное на 1, равно сумме всех чисел, заполняющих параллелограмм, ограниченный теми правой и левой диагоналями, на пересечении которых стоит число a (сами эти диагонали в рассматриваемый параллелограмм не включаются). а) Докажите, что описанная окружность треугольника ABC является окружностью девяти точек для треугольника, образованного центрами вневписанных окружностей треугольника ABC. б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70]
B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.
Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.
Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.
б) Докажите, что описанная окружность делит пополам отрезок, соединяющий центры вписанной и вневписанной окружностей.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 70] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|