ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через каждую из точек пересечения продолжений сторон выпуклого четырехугольника ABCD проведено по две прямые. Эти прямые делят четырехугольник на девять четырехугольников.
а) Докажите, что если три из четырехугольников, примыкающих к вершинам A, B, C, D, описанные, то четвертый четырехугольник тоже описанный.
б) Докажите, что если ra, rb, rc, rd — радиусы окружностей, вписанных в четырехугольники, примыкающие к вершинам A, B, C, D, то

$\displaystyle {\frac{1}{r_a}}$ + $\displaystyle {\frac{1}{r_c}}$ = $\displaystyle {\frac{1}{r_b}}$ + $\displaystyle {\frac{1}{r_d}}$.


   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 137]      



Задача 108158

Темы:   [ Описанные четырехугольники ]
[ Вписанные и описанные окружности ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Две касательные, проведенные из одной точки ]
[ Свойства биссектрис, конкуррентность ]
[ Ромбы. Признаки и свойства ]
Сложность: 6
Классы: 8,9,10,11

Автор: Сонкин М.

Окружность, вписанная в четырёхугольник ABCD , касается его сторон DA , AB , BC и CD в точках K , L , M и N соответственно. Пусть S1 , S2 , S3 и S4 – окружности, вписанные в треугольники AKL , BLM , CMN и DNK соответственно. К окружностям S1 и S2 , S2 и S3 , S3 и S4 , S4 и S1 проведены общие касательные, отличные от сторон четырёхугольника ABCD . Докажите, что четырёхугольник, образованный этими четырьмя касательными, – ромб.
Прислать комментарий     Решение


Задача 57020

Тема:   [ Описанные четырехугольники ]
Сложность: 6+
Классы: 8,9

Через каждую из точек пересечения продолжений сторон выпуклого четырехугольника ABCD проведено по две прямые. Эти прямые делят четырехугольник на девять четырехугольников.
а) Докажите, что если три из четырехугольников, примыкающих к вершинам A, B, C, D, описанные, то четвертый четырехугольник тоже описанный.
б) Докажите, что если ra, rb, rc, rd — радиусы окружностей, вписанных в четырехугольники, примыкающие к вершинам A, B, C, D, то

$\displaystyle {\frac{1}{r_a}}$ + $\displaystyle {\frac{1}{r_c}}$ = $\displaystyle {\frac{1}{r_b}}$ + $\displaystyle {\frac{1}{r_d}}$.


Прислать комментарий     Решение

Задача 57022

Тема:   [ Описанные четырехугольники ]
Сложность: 6+
Классы: 8,9

Докажите, что точка пересечения диагоналей описанного четырехугольника совпадает с точкой пересечения диагоналей четырехугольника, вершинами которого служат точки касания сторон исходного четырехугольника с вписанной окружностью.
Прислать комментарий     Решение


Задача 52698

Темы:   [ Ромбы. Признаки и свойства ]
[ Описанные четырехугольники ]
Сложность: 3-
Классы: 8,9

Докажите, что если в параллелограмм можно вписать окружность, то этот параллелограмм — ромб.

Прислать комментарий     Решение


Задача 53663

Темы:   [ Касающиеся окружности ]
[ Описанные четырехугольники ]
Сложность: 3-
Классы: 8,9

В вершинах A, B, C и D четырёхугольника ABCD находятся центры четырёх окружностей. Каждыые две окружности, центры которых расположены в соседних вершинах, касаются друг друга внешним образом. Известны три стороны четырёхугольника:  AB = 2,  BC = 3,  CD = 5.  Найдите сторону AD.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 137]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .