ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC проведена медиана AM.
Докажите, что
2AM а) Даны прямые a, b, c, d, проходящие через одну
точку, и прямая l, через эту точку не проходящая. Пусть A,
B, C, D — точки пересечения прямой l с прямыми a, b,
c, d соответственно. Докажите, что
(abcd )= (ABCD).
По положительным числам х и у вычисляют а = 1/y и b = y + 1/x. После этого находят С – наименьшее число из трёх: x, a и b. Точки A, B и C лежат на одной прямой, причём B находится между A и C. На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3.
Докажите, что если описанные окружности треугольников
A1A2B3,
A1B2A3 и B1A2A3 проходят через одну точку, то и описанные
окружности треугольников B1B2A3, B1A2B3 и A1B2B3
пересекаются в одной точке.
Сфера радиуса R делит каждое из рёбер SA , SC , AB и BC треугольной пирамиды SABC на три равные части и проходит через середины рёбер AC и SB . Найдите высоту пирамиды, опущенную из вершины S . Докажите, что если плоскости а) Через точку P проводятся всевозможные секущие
окружности S. Найдите геометрическое место точек пересечения
касательных к окружности S, проведенных в двух точках
пересечения окружности с секущей.
Докажите, что если
(ABCX) = (ABCY), то X = Y (все
точки попарно различны, кроме, быть может, точек X и Y,
и лежат на одной прямой).
На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.
Четырехугольник ABCD выпуклый; точки
A1, B1, C1
и D1 таковы, что
AB||C1D1, AC||B1D1 и т. д. для всех
пар вершин. Докажите, что четырехугольник
A1B1C1D1 тоже
выпуклый, причем
|
Страница: 1 [Всего задач: 5]
На плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что
К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A, вторично пересекает w1 и w2 в точках и L соответственно (A лежит между K и L ). Прямые KC и LD пересекаются в точке P. Докажите, что PB – симедиана треугольника KPL (прямая, симметричная медиане относительно биссектрисы).
Треугольники ABC и A1B1C1 подобны и по-разному ориентированы. На отрезке AA1 взята такая точка A', что AA' : A1A' = BC : B1C1. Аналогично строим B' и C'. Докажите, что A', B' и C' лежат на одной прямой.
Докажите, что два четырехугольника подобны тогда
и только тогда, когда у них равны четыре соответственных
угла и соответственные углы между диагоналями.
Четырехугольник ABCD выпуклый; точки
A1, B1, C1
и D1 таковы, что
AB||C1D1, AC||B1D1 и т. д. для всех
пар вершин. Докажите, что четырехугольник
A1B1C1D1 тоже
выпуклый, причем
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке