ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 239]      



Задача 109532

Темы:   [ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Центральная симметрия помогает решить задачу ]
[ Разбиения на пары и группы; биекции ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Прислать комментарий     Решение

Задача 110125

Темы:   [ Тригонометрические уравнения ]
[ Геометрические интерпретации в алгебре ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Найдите все углы α , для которых набор чисел sinα , sin2α , sin3α совпадает с набором cosα , cos2α , cos3α .
Прислать комментарий     Решение


Задача 115738

Темы:   [ Правильный (равносторонний) треугольник ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.

Прислать комментарий     Решение

Задача 115775

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теорема Паскаля ]
Сложность: 4-
Классы: 8,9,10,11

Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что  PQAB.

Прислать комментарий     Решение

Задача 57084

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .