Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

Вниз   Решение


Дан угол XAY. Концы B и C отрезков BO и CO длиной 1 перемещаются по лучам AX и AY. Постройте четырехугольник ABOC наибольшей площади.

ВверхВниз   Решение


Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

ВверхВниз   Решение


Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.

ВверхВниз   Решение


Доказать, что  n³ + 5n  делится на 6 при любом целом n.

ВверхВниз   Решение


Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

ВверхВниз   Решение


Среди всех решений системы
    x² + y² = 4,
    z² + t² = 9,
    xt + yz = 6
выберите те, для которых величина  x + z  принимает наибольшее значение.

ВверхВниз   Решение


Дан равнобедренный треугольник ABC с вершиной A. Длина прыжка кузнечика равна основанию BC. Известно, что начиная движение из точки C, кузнечик за 22 прыжка оказался в точке A, приземляясь после каждого прыжка на боковой стороне треугольника ABC и чередуя стороны при каждом прыжке, кроме последнего. Найдите углы треугольника ABC, если известно, что с каждым прыжком кузнечик приближался к точке A.

ВверхВниз   Решение


На стороне AD квадрата ABCD во внутреннюю сторону построен тупоугольный равнобедренный треугольник AED. Вокруг него описана окружность и проведён её диаметр AF, на стороне CD выбрана точка G так, что  CG = DF.  Докажите, что угол BGE меньше половины угла AED.

ВверхВниз   Решение


Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна  ½ na²,  где a – сторона n-угольника.

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 241]      



Задача 115775

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
[ Конкуррентность высот. Углы между высотами. ]
[ Теорема Паскаля ]
Сложность: 4-
Классы: 8,9,10,11

Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что  PQAB.

Прислать комментарий     Решение

Задача 57084

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

Прислать комментарий     Решение

Задача 57086

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
Сложность: 4
Классы: 9

Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна  ½ na²,  где a – сторона n-угольника.

Прислать комментарий     Решение

Задача 57087

Темы:   [ Правильные многоугольники ]
[ Скалярное произведение. Соотношения ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9

Правильный n-угольник A1...An вписан в окружность радиуса R;  X – точка этой окружности. Докажите, что  

Прислать комментарий     Решение

Задача 57525

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Векторы помогают решить задачу ]
[ Скалярное произведение. Соотношения ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9,10

Среди всех треугольников, вписанных в данную окружность, найдите тот, у которого максимальна сумма квадратов длин сторон.
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .