ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Разрежьте изображённую на рисунке трапецию на три части и сложите из них квадрат.

Вниз   Решение


Три ёжика делили три кусочка сыра массами 5 г, 8 г и 11 г. Лиса стала им помогать. Она может от любых двух кусочков одновременно отрезать и съесть по 1 г сыра. Сможет ли лиса оставить ёжикам равные кусочки сыра?

ВверхВниз   Решение


  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

ВверхВниз   Решение


Боковая сторона равнобедренного треугольника равна 2, угол при вершине равен 120o. Найдите диаметр описанной окружности.

ВверхВниз   Решение


В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.

ВверхВниз   Решение


Какое максимальное число королей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

ВверхВниз   Решение


В треугольнике ABC из вершины A проведена прямая, пересекающая сторону BC в точке D, находящейся между точками B и C, причём $ {\frac{CD}{BC}}$ = $ \alpha$ ( $ \alpha$ < $ {\frac{1}{2}}$). На стороне BC между точками B и D взята точка E и через неё проведена прямая, параллельная стороне AC и пересекающая сторону AB в точке F. Найдите отношение площадей трапеции ACEF и треугольника ADC, если известно, что CD = DE.

ВверхВниз   Решение


Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



Задача 66160

Темы:   [ Многочлены (прочее) ]
[ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Прислать комментарий     Решение

Задача 79553

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенства с модулями ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 4-
Классы: 9,10

Все значения квадратного трёхчлена  ax² + bx + c  на отрезке  [0, 1]  по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина  |a| + |b| + |c|?

Прислать комментарий     Решение

Задача 61038

Темы:   [ Теорема Виета ]
[ Симметрические многочлены ]
[ Кубические многочлены ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 4
Классы: 9,10,11

Пусть известно, что все корни некоторого уравнения  x3 + px2 + qx + r = 0  положительны. Какому дополнительному условию должны удовлетворять его коэффициенты p, q и r для того, чтобы из отрезков, длины которых равны этим корням, можно было составить треугольник?

Прислать комментарий     Решение

Задача 57315

Темы:   [ Неравенство треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенства для остроугольных треугольников ]
[ Алгебраические задачи на неравенство треугольника ]
[ Доказательство от противного ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
Прислать комментарий     Решение


Задача 109860

Темы:   [ Тригонометрические неравенства ]
[ Геометрические интерпретации в алгебре ]
[ Векторы помогают решить задачу ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 5
Классы: 10,11

Для углов α , β , γ справедливо равенство sinα + sinβ + sinγ 2 . Докажите, что cosα + cosβ + cosγ .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .