ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника. На прямой даны четыре точки A, B, C, D в указанном
порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под
равными углами.
В равнобедренном треугольнике ABC известны, что AC = 4, AB = BC = 6. Биссектриса угла C пересекает сторону AB в точке D. Через точку D проведена окружность, касающаяся стороны AC в её середине и пересекающая отрезок AD в точке E. Найдите площадь треугольника DEC.
Последовательность чисел {an} задана условиями
a1 = 1, an + 1 = an + Верно ли, что эта
последовательность ограничена?
На медиане BM и на биссектрисе BK
треугольника ABC (или на их продолжениях) взяты точки D и
E так, что
DK || AB и
EM || BC. Докажите, что
ED
Центр окружности, касающейся стороны BC треугольника ABC в точке B и проходящей через точку A, лежит на отрезке AC. Найдите площадь треугольника ABC, если известно, что BC = 6 и AC = 9.
Расстояние от точки M до центра O окружности равно диаметру этой окружности. Через точку M проведены две прямые, касающиеся окружности в точках A и B. Найдите углы треугольника AOB.
Сходимость итерационного процесса.
Предположим, что функция f (x) отображает отрезок [a;b] в
себя, и на этом отрезке
| f'(x)|
| xn + 1 - xn|
Сколькими способами можно прочитать слово "строка", двигаясь вправо или вниз?: Касательная и секущая, проведённые из одной точки к окружности, взаимно перпендикулярны. Касательная равна 12, а внутренняя часть секущей равна 10. Найдите радиус окружности. Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа. Длина каждой стороны выпуклого четырёхугольника ABCD не меньше 1 и не больше 2. Его диагонали пересекаются в точке O. Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число. За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.
В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус каждой из окружностей, если ширина образовавшегося кольца равна 8.
Докажите, что 2n > (1 – x)n + (1 + x)n при целом n ≥ 2 и |x| < 1. Дан прямоугольный треугольник ABC. Пусть M – середина гипотенузы AB, O – центр описанной окружности ω треугольника CMB. Прямая AC вторично пересекает окружность ω в точке K. Прямая KO пересекает описанную окружность треугольника ABC в точке L. Докажите, что прямые AL и KM пересекаются на описанной окружности треугольника ACM. Пять отрезков таковы, что из любых трех из них
можно составить треугольник. Докажите, что хотя бы один из этих
треугольников остроугольный.
|
Страница: << 1 2 3 4 5 6 [Всего задач: 30]
Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Все значения квадратного трёхчлена ax² + bx + c на отрезке [0, 1] по модулю не превосходят 1.
Пусть известно, что все корни некоторого уравнения x3 + px2 + qx + r = 0 положительны. Какому дополнительному условию должны удовлетворять его коэффициенты p, q и r для того, чтобы из отрезков, длины которых равны этим корням, можно было составить треугольник?
Пять отрезков таковы, что из любых трех из них
можно составить треугольник. Докажите, что хотя бы один из этих
треугольников остроугольный.
Для углов α , β , γ справедливо равенство
sinα + sinβ + sinγ
Страница: << 1 2 3 4 5 6 [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке