ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC, площадь которого равна 1, на медиане BK
взята точка M, причём MK = ¼ BK. Прямая AM пересекает сторону BC в точке L. Основанием наклонного параллелепипеда служит ромб, сторона которого равна 60. Плоскость диагонального сечения, проходящая через большую диагональ основания, перпендикулярна плоскости основания. Площадь этого сечения равна 7200. Найдите меньшую диагональ основания, если боковое ребро равно 80 и образует с плоскостью основания угол 60o . Многоугольник, описанный около окружности радиуса r,
разрезан на треугольники (произвольным образом). Докажите, что сумма
радиусов вписанных окружностей этих треугольников больше r.
Длины сторон треугольника образуют арифметическую
прогрессию. Докажите, что радиус вписанной окружности
равен трети одной из высот треугольника.
Через точку M, лежащую внутри параллелограмма ABCD,
проведены прямые PR и QS, параллельные сторонам BC и AB
(точки P, Q, R и S лежат на сторонах AB, BC, CD и DA
соответственно). Докажите, что прямые BS, PD и MC пересекаются в
одной точке.
В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$. Доказать, что квадрат любого простого числа p > 3 при делении на 12 даёт в остатке 1. Доказать, что многочлен с целыми коэффициентами a0xn + a1xn–1 + ... + an–1x + an, принимающий при x = 0 и x = 1 нечётные значения, не имеет целых корней.
Докажите, что из всех хорд, проходящих через точку A, взятую внутри круга и отличную от центра, наименьшей будет та, которая перпендикулярна диаметру, проходящему через точку A.
Решить уравнение:
| x + 1| - | x| + 3| x - 1| - 2| x - 2| = x + 2.
Решить в натуральных числах уравнение x2y–1 + (x + 1)2y–1 = (x + 2)2y–1. У первоклассника имеется сто карточек, на которых написаны натуральные числа от 1 до 100, а также большой запас знаков "+" и "=". Какое наибольшее число верных равенств он может составить? (Каждая карточка используется не более одного раза, в каждом равенстве может быть только один знак "=", переворачивать карточки и прикладывать их для получения новых чисел нельзя.) На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что $AK = AC, BK = LC$. Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный. В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3. |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 402]
В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.
В выпуклом четырёхугольнике ABCD диагонали AC и BD пересекаются в точке O . Точки K , L , M и N лежат на сторонах AB , BC , CD и AD соответственно, причём точка O лежит на отрезках KM и LN и делит их пополам. Докажите, что ABCD — параллелограмм.
Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.
На сторонах параллелограмма построены квадраты по ту же сторону от его сторон, по которую расположен сам параллелограмм. Докажите, что центры этих квадратов сами образуют квадрат.
В параллелограмм P1 вписан параллелограмм P2, а в параллелограмм P2 вписан параллелограмм P3, стороны которого параллельны сторонам P1. Докажите, что длина хотя бы одной из сторон P1 не превосходит удвоенной длины параллельной ей стороны P3.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 402]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке