Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

AB — диаметр окружности, CD — хорда этой окружности. Перпендикуляры к хорде, проведённые через её концы C и D, пересекают прямую AB в точках K и M соответственно. Докажите, что AK = BM.

Вниз   Решение


Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Сколько в этой стране дорог?

ВверхВниз   Решение


Стороны треугольника ABC касаются вписанной окружности в точках K, P и M, причём точка M расположена на стороне BC. Найдите угол KMP, если  ∠A = 2α.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по центру его описанной окружности и двум прямым, на которых лежат высоты треугольника.

ВверхВниз   Решение


В кружке у каждого члена имеется один друг и один враг. Доказать, что
  а) число членов чётно.
  б) кружок можно разделить на два нейтральных кружка.

ВверхВниз   Решение


Отрезки AA1 , BB1 и CC1 , концы которых лежат на сфере радиуса 10, попарно перпендикулярны и пересекаются в точке M . Известно, что AA1=12 , BB1 =18 и CM:MC1=11:3 . Найдите расстояние от центра сферы до точки M,

ВверхВниз   Решение


p простых чисел a1, a2, ..., ap образуют возрастающую арифметическую прогрессию и  a1 > p.
Доказать, что если p – простое число, то разность прогрессии делится на p.

ВверхВниз   Решение


Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
  а) Могло ли случиться, что до a5 последовательность убывает  (a1 > a2 > a3 > a4 > a5),  а начиная с a5 – возрастает  (a5 < a6 < a7 < ...)?
  б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?

ВверхВниз   Решение


Пусть $E$ – одна из двух точек пересечения окружностей $\omega_1$ и $\omega_2$. Пусть $AB$ – общая внешняя касательная этих окружностей, прямая $CD$ параллельна $AB$, причем точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ – на $\omega_2$. Окружности $ABE$ и $CDE$ повторно пересекаются в точке $F$. Докажите, что $F$ делит одну из дуг $CD$ окружности $CDE$ пополам.

ВверхВниз   Решение


AB и AC — две хорды, образующие угол BAC, равный 70o. Через точки B и C проведены касательные до пересечения в точке M. Найдите $ \angle$BMC.

ВверхВниз   Решение


Окружность вписана в треугольник со сторонами, равными a, b и c. Найдите отрезки, на которые точка касания делит сторону, равную a.

ВверхВниз   Решение


Доказать, что сумма цифр числа, являющегося точным квадратом, не может равняться 5.

ВверхВниз   Решение


Постройте хорду данной окружности, равную и параллельную заданному отрезку.

ВверхВниз   Решение


На доске написаны две суммы:

1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999
9 + 98 + 987 + 9876 + 98765 + 987654 + 9876543 + 98765432 + 987654321

Определите, какая из них больше (или они равны).

ВверхВниз   Решение


Плоская выпуклая фигура ограничена отрезками AB и AC и дугой BC некоторой окружности. Постройте какую-нибудь прямую, которая делит пополам её площадь.

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 258]      



Задача 76498

Темы:   [ Уравнения в целых числах ]
[ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
Сложность: 3
Классы: 10,11

Решить в целых числах уравнение  x + y = x² – xy + y².

Прислать комментарий     Решение

Задача 88316

Темы:   [ Произведения и факториалы ]
[ Числовые неравенства. Сравнения чисел. ]
[ Неравенство Коши ]
Сложность: 3
Классы: 7,8

Что больше 200! или 100200?

Прислать комментарий     Решение

Задача 32078

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

Найти все числа, которые в 12 раз больше суммы своих цифр.

Прислать комментарий     Решение

Задача 32883

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Доказать, что
  а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
  б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).

Прислать комментарий     Решение

Задача 57534

Темы:   [ Экстремальные точки треугольника ]
[ Отношение площадей треугольников с общим углом ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
  а) При каком положении точки X длина отрезка MN будет наименьшей?
  б) При каком положении точки X площадь четырёхугольника CMXN будет наибольшей?

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .