ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи При каких p и q уравнению x² + px + q = 0 удовлетворяют два различных числа 2p и p + q?
Пусть $D$ – основание внешней биссектрисы угла $B$ треугольника $ABC$, в котором $AB > BC$. Сторона $AC$ касается вписанной и вневписанной окружностей в точках $K$ и $K_1$ соответственно, точки $I$ и $I_1$ – центры этих окружностей. Прямая $BK$ пересекает $DI_1$ в точке $X$, а $BK_1$ пересекает $DI$ в точке $Y$. Докажите, что $XY \perp AC$. Плоскость раскрашена в три цвета. Докажите, что
найдутся две точки одного цвета, расстояние между которыми равно 1.
Если при любом положительном p все корни уравнения ax² + bx + c + p = 0 действительны и положительны, то коэффициент a равен нулю. Докажите. После ввода в строй третьего транспортного кольца на нем запланировали установить ровно 1998 светофоров. Каждую минуту они одновременно меняют цвет по следующему правилу: Каждый светофор меняет цвет в зависимости от цвета двух соседних (справа и слева), причем 1) если два соседних светофора горели одним цветом, то светофор между ними загорается этим же цветом. 2) если два соседних светофора горели разными цветами, то светофор между ними загорается третьим цветом. В начальный момент все светофоры кроме одного были зеленые, а один - красный. Оппоненты Лужкова заявили, что через какое-то время все светофоры будут гореть желтым цветом. Правы ли они? На клетчатой бумаге даны произвольные n клеток.
Докажите, что из них можно выбрать не менее n/4 клеток,
не имеющих общих точек.
Из конца A диаметра AC окружности опущен перпендикуляр AP на касательную, проведённую через лежащую на окружности точку B, отличную от A и C. Докажите, что AB – биссектриса угла PAC. При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2? Прямая, проведённая через вершину A треугольника ABC
перпендикулярно его медиане BD, делит эту медиану пополам. Дайте геометрическую интерпретацию следующих неравенств: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47]
Пусть z1 и z2 – фиксированные точки
комплексной плоскости. Дайте геометрическое описание множеств всех точек z, удовлетворяющих соотношениям:
Дайте геометрическую интерпретацию следующих неравенств:
Найдите min |3 + 2i – z| при |z| ≤ 1.
Запишите с помощью неравенств следующие множества точек на комплексной плоскости:
z2, z1, z0 лежат на одной прямой тогда и только тогда, когда
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 47]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке