Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Про многочлен   f(x) = x10 + a9x9 + ... + a0  известно, что   f(1) = f(–1),  ...,   f(5) = f(–5).  Докажите, что   f(x) = f(– x)  для любого действительного x.

Вниз   Решение


Докажите, что если в выпуклом пятиугольнике ABCDE  ABC = ∠ADE  и ∠AEC = ∠ADB,  то  ∠BAC = ∠DAE.

ВверхВниз   Решение


Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

ВверхВниз   Решение


Один путник шел первые полпути со скоростью 4 км/ч, а вторые полпути со скоростью 6 км/ч. Другой путник шел первую половину времени со скоростью со скоростью 4км/ч, а вторую половину времени со скоростью 6 км/ч. С какой постоянной скоростью должен был бы идти каждый из них, чтобы затратить на свое путешествие то же самое время?

ВверхВниз   Решение


В треугольнике ABC точка D лежит на стороне BC, а точка O — на отрезке AD. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC = 2$ \sqrt{2}$AB, угол DAC в два раза больше угла BAD, а угол OCA в два раза меньше угла OCB. Найдите косинус угла ACB.

ВверхВниз   Решение


Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа?

ВверхВниз   Решение


Автор: Жгун В.С.

Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.

ВверхВниз   Решение


В равнобедренную трапецию, периметр которой равен 8, а площадь 2, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

ВверхВниз   Решение


Прямоугольник размером m×n замощен плитками, изображенными на рис. Докажите, что m и n делятся на 4.



ВверхВниз   Решение


Около треугольника APK описана окружность радиуса 1. Продолжение стороны AP за вершину P отсекает от касательной к окружности, проведённой через вершину K, отрезок BK, равный 7. Найдите площадь треугольника APK, если известно, что угол ABK равен arctg$ {\frac{2}{7}}$.

ВверхВниз   Решение


Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

Вверх   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 970]      



Задача 61039

Тема:   [ Теорема Виета ]
Сложность: 4-
Классы: 9,10,11

а) Известно, что  x + y = u + v,  x2 + y2 = u2 + v2.
Докажите, что при любом натуральном n выполняется равенство  xn + yn = un + vn.

б) Известно, что  x + y + z = u + v + t,  x2 + y2 + z2 = u2 + v2 + t2x3 + y3 + z3 = u3 + v3 + t3.
Докажите, что при любом натуральном n выполняется равенство  xn + yn + zn = un + vn + tn.

Прислать комментарий     Решение

Задача 61052

Тема:   [ Многочлен n-й степени имеет не более n корней ]
Сложность: 4-
Классы: 8,9,10

Пусть  x1 < x2 < ... < xn  – действительные числа. Докажите, что для любых  y1, y2, ..., yn  существует единственнный многочлен  f(x) степени не выше  n – 1,  такой, что  f(x1) = y1, ...,  f(xn) = yn.

Прислать комментарий     Решение

Задача 61056

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

Прислать комментарий     Решение

Задача 61057

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Два корабля двигаются с постоянными скоростями. Расстояния между ними, измеренные в 12, 14 и 15 часов, равнялись
5, 7 и 2 километра соответственно. Каким было расстояние между кораблями в 13 часов?

Прислать комментарий     Решение

Задача 61061

Тема:   [ Многочлен n-й степени имеет не более n корней ]
Сложность: 4-
Классы: 8,9,10

Про многочлен   f(x) = x10 + a9x9 + ... + a0  известно, что   f(1) = f(–1),  ...,   f(5) = f(–5).  Докажите, что   f(x) = f(– x)  для любого действительного x.

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 970]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .