ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 965]      



Задача 61057

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Задачи на движение ]
Сложность: 4-
Классы: 8,9,10,11

Два корабля двигаются с постоянными скоростями. Расстояния между ними, измеренные в 12, 14 и 15 часов, равнялись
5, 7 и 2 километра соответственно. Каким было расстояние между кораблями в 13 часов?

Прислать комментарий     Решение

Задача 61061

Тема:   [ Многочлен n-й степени имеет не более n корней ]
Сложность: 4-
Классы: 8,9,10

Про многочлен   f(x) = x10 + a9x9 + ... + a0  известно, что   f(1) = f(–1),  ...,   f(5) = f(–5).  Докажите, что   f(x) = f(– x)  для любого действительного x.

Прислать комментарий     Решение

Задача 61095

Тема:   [ Разложение на множители ]
Сложность: 4-
Классы: 10,11

Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

Прислать комментарий     Решение

Задача 61097

Темы:   [ Теорема Безу. Разложение на множители ]
[ Тригонометрическая форма. Формула Муавра ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

а) Докажите, что многочлен  P(x) = (cos φ + x sin φ)n – cos nφ – x sin nφ  делится на  x2 + 1.
б) Докажите, что многочлен  Q(x) = xnsin φ – ρn–1xsin nφ + ρnsin(n – 1)φ  делится на  x2 – 2ρxcos φ + ρ2.

Прислать комментарий     Решение

Задача 61139

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
[ Производная и кратные корни ]
Сложность: 4-
Классы: 10,11

При каких n многочлен  (x + 1)n + xn + 1  делится на:
  а)  x² + x + 1;    б)  (x² + x + 1)²;    в)   (x² + x + 1)³?

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .