ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан выпуклый n-угольник, никакие две стороны
которого не параллельны. Докажите, что различных треугольников,
о которых идет речь в задаче 22.8, не менее n - 2.
Внутри квадрата расположены три окружности, каждая из которых касается внешним образом двух других, а также касается двух сторон квадрата. Докажите, что радиусы двух из данных окружностей одинаковы. Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой. Пусть x, y, z – положительные числа и xyz(x + y + z) = 1. Найдите наименьшее значение выражения (x + y)(x + z). |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 63]
а) Числа a, b, c являются тремя из четырёх корней многочлена x4 – ax3 – bx + c. Найдите все такие многочлены.
Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0, P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все числа в последовательности a1, a2, ... различны.
Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Пусть x, y, z – положительные числа и xyz(x + y + z) = 1. Найдите наименьшее значение выражения (x + y)(x + z).
Пусть числа y0, y1, ..., yn таковы, что для любого многочлена f (x) степени m < n справедливо равенство:
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 63]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке