ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх.

Вниз   Решение


Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 66]      



Задача 66371

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10

При каких целых значениях m число Р = 1 + 2m + 3m2 + 4m3 + 5m4 + 4m5 + 3m6 + 2m7 + m8 является квадратом целого числа?
Прислать комментарий     Решение


Задача 61041

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Многочлены (прочее) ]
[ Теорема Виета ]
Сложность: 4-
Классы: 8,9,10

а) Числа a, b, c являются тремя из четырёх корней многочлена  x4ax3bx + c.  Найдите все такие многочлены.
б) Числа a, b, c являются корнями многочлена  x4ax3bx + c.  Найдите все такие многочлены.

Прислать комментарий     Решение

Задача 105163

Темы:   [ Итерации ]
[ Многочлены (прочее) ]
[ Предел функции ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 9,10,11

Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел  a1, a2, ...,  такая, что  P(a1) = 0,  P(a2) = a1P(a3) = a2  и т. д. Докажите, что не все числа в последовательности  a1, a2, ...  различны.

Прислать комментарий     Решение

Задача 60974

 [Китайская теорема об остатках для многочленов]
Темы:   [ Китайская теорема об остатках ]
[ Многочлены (прочее) ]
Сложность: 4
Классы: 9,10,11

Пусть m1(x), ..., mn(x) – попарно взаимно простые многочлены, a1(x), ..., an(x) – произвольные многочлены.
Докажите, что существует ровно один такой многочлен p(x), что
    p(x) ≡ a1(x) (mod m1(x)),
      ...
    p(x) ≡ an(x) (mod mn(x))
и  deg p(x) < deg m1(x) + ... + deg mn(x).

Прислать комментарий     Решение

Задача 61170

Темы:   [ Геометрические интерпретации в алгебре ]
[ Многочлены (прочее) ]
[ Формула Герона ]
[ Неравенства для площади треугольника ]
Сложность: 4
Классы: 10,11

Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .