ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа  a + b  и  an + bn  – целые?

Вниз   Решение


Докажите, что при любых k и l многочлен gk,l(x) является возвратным, то есть  
(Определение многочленов Гаусса см. здесь.)

Вверх   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 965]      



Задача 110209

Темы:   [ Квадратные уравнения. Теорема Виета ]
[ Доказательство от противного ]
[ Подсчет двумя способами ]
Сложность: 4
Классы: 8,9,10

Даны  n > 1  приведённых квадратных трёхчленов  x² – a1x + b1,  ...,  x² – anx + bn,  причём все 2n чисел  a1, ..., an, b1, ..., bn  различны.
Может ли случиться, что каждое из чисел  a1, ..., an, b1, ..., bn  является корнем одного из этих трёхчленов?

Прислать комментарий     Решение

Задача 110212

Темы:   [ Разложение на множители ]
[ Рациональные и иррациональные числа ]
[ НОД и НОК. Взаимная простота ]
[ Арифметика остатков (прочее) ]
Сложность: 4
Классы: 8,9,10

При каких натуральных n найдутся такие положительные рациональные, но не целые числа a и b, что оба числа  a + b  и  an + bn  – целые?
Прислать комментарий     Решение


Задача 61527

Темы:   [ Многочлены Гаусса ]
[ Раскладки и разбиения ]
Сложность: 4+
Классы: 10,11

Докажите, что при любых k и l многочлен gk,l(x) является возвратным, то есть  
(Определение многочленов Гаусса см. здесь.)

Прислать комментарий     Решение

Задача 64664

Тема:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
Сложность: 4+
Классы: 10,11

Автор: Звонкин Д.

Многочлен P(x) удовлетворяет условиям:  P(0) = 1,  (P(x))² = 1 + x + x100Q(x),  где Q(x) – некий многочлен.
Докажите, что коэффициент при x99 в многочлене  (P(x) + 1)100  равен нулю.

Прислать комментарий     Решение

Задача 65692

Темы:   [ Многочлены (прочее) ]
[ Индукция (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Про приведённый многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  с действительными коэффициентами известно, что при некотором натуральном
m ≥ 2  многочлен    имеет действительные корни, причём только положительные. Обязательно ли сам многочлен P(x) имеет действительные корни, причём только положительные?

Прислать комментарий     Решение

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .