Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Игральную кость бросают шесть раз. Найдите математическое ожидание числа различных выпавших граней.

Вниз   Решение


Найдите радиус наименьшего круга, в котором можно разместить треугольник со сторонами 7, 9 и 12.

ВверхВниз   Решение


Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

ВверхВниз   Решение


Даны многочлены P(x) и Q(x) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение  P(x) = Q(x)  не имеет действительных корней. Докажите, что уравнение P(x + 1) = Q(x – 1) имеет хотя бы один действительный корень.

ВверхВниз   Решение


В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.

ВверхВниз   Решение


Дан треугольник ABC. На его стороне AB выбирается точка P и через нее проводятся прямые PM и PN, параллельные AC и BC соответственно (точки M и N лежат на сторонах BC и AC); Q — точка пересечения описанных окружностей треугольников APN и BPM. Докажите, что все прямые PQ проходят через фиксированную точку.

ВверхВниз   Решение


Существует ли квадратный трёхчлен, который при  x = 2014, 2015, 2016  принимает значения 2015, 0, 2015 соответственно?

ВверхВниз   Решение


Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC.

ВверхВниз   Решение


Решите систему:   .

ВверхВниз   Решение


Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 965]      



Задача 64359

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 10,11

Даны многочлены P(x) и Q(x) десятой степени, старшие коэффициенты которых равны 1. Известно, что уравнение  P(x) = Q(x)  не имеет действительных корней. Докажите, что уравнение P(x + 1) = Q(x – 1) имеет хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 64719

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 9,10,11

Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

Прислать комментарий     Решение

Задача 64888

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 10,11

Решите систему:   .

Прислать комментарий     Решение

Задача 64955

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3
Классы: 9,10,11

Докажите, что если в выражении  (x² – x + 1)2014  раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.

Прислать комментарий     Решение

Задача 65431

Тема:   [ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 9,10,11

Существует ли квадратный трёхчлен, который при  x = 2014, 2015, 2016  принимает значения 2015, 0, 2015 соответственно?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .