ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

   Решение

Задачи

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 563]      



Задача 64475

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 10,11

На стороне AB треугольника ABC взята произвольная точка C1. Точки A1, B1 на лучах BC и AC таковы, что  ∠AC1B1 = ∠BC1A1 = ∠ACB.  Прямые AA1 и BB1 пересекаются в точке C2. Докажите, что все прямые C1C2 проходят через одну точку.

Прислать комментарий     Решение

Задача 64723

Темы:   [ Теория игр (прочее) ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
[ Комплексные числа в геометрии ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

Прислать комментарий     Решение

Задача 65374

Темы:   [ Ортоцентр и ортотреугольник ]
[ Точка Лемуана ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11

Автор: Креков Д.

В остроугольном неравнобедренном треугольнике ABC высоты AA' и BB' пересекаются в точке H, а медианы треугольника AHB пересекаются в точке M. Прямая CM делит отрезок A'B' пополам. Найдите угол C.

Прислать комментарий     Решение

Задача 66245

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Применение проективных преобразований, сохраняющих окружность ]
Сложность: 4+
Классы: 9,10,11

В окружность вписан шестиугольник ABCDEF.  K, L, M, N – точки пересечения пар прямых AB и CD, AC и BD, AF и DE, AE и DF.
Докажите, что если три из этих точек лежат на одной прямой, то и четвёртая точка лежит на этой прямой.

Прислать комментарий     Решение

Задача 105217

Темы:   [ Развертка помогает решить задачу ]
[ Тетраэдр (прочее) ]
[ Свойства разверток ]
[ Симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9,10,11

Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал.

Прислать комментарий     Решение

Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .