ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 116839

Темы:   [ Центр масс ]
[ Сферы (прочее) ]
[ Правильные многогранники (прочее) ]
[ Векторы помогают решить задачу ]
[ Линейные зависимости векторов ]
[ Скалярное произведение ]
Сложность: 4+
Классы: 10,11

а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

Прислать комментарий     Решение

Задача 53769

Темы:   [ Средняя линия треугольника ]
[ Центр масс ]
Сложность: 3
Классы: 8,9

AA1 – медиана треугольника ABC. Точка C1 лежит на стороне AB, причём  AC1 : C1B = 1 : 2.  Отрезки AA1 и CC1 пересекаются в точке M.
Найдите отношения  AM : MA1  и  CM : MC1.

Прислать комментарий     Решение

Задача 87008

Темы:   [ Векторы помогают решить задачу ]
[ Центр масс ]
[ Параллелепипеды (прочее) ]
Сложность: 3+
Классы: 10,11


Докажите, что диагональ AC1 параллелепипеда ABCDA1B1C1D1 проходит через точки пересечения медиан треугольников A1BD и CB1D1 и делится ими на три равные части.

Прислать комментарий     Решение


Задача 53898

 [Теорема Ван-Обеля]
Темы:   [ Две пары подобных треугольников ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9

Точки A1, B1, C1 лежат соответственно на сторонах BC, AC, AB треугольника ABC, причём отрезки AA1, BB1, CC1 пересекаются в точке K.
Докажите, что  AK/KA1 = AB1/B1C + AC1/C1B.

Прислать комментарий     Решение

Задача 64925

Темы:   [ Куб ]
[ Центр масс ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .