ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Каковы возможные значения n?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 149]      



Задача 65012

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Каковы возможные значения n?

Прислать комментарий     Решение

Задача 65027

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Существует ли выпуклый семиугольник, который можно разрезать на 2011 равных треугольников?

Прислать комментарий     Решение

Задача 65598

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разные задачи на разрезания ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6,7

Равносторонний треугольник со стороной 8 разделили на равносторонние треугольнички со стороной 1 (см. рис.). Какое наименьшее количество треугольничков надо закрасить, чтобы все точки пересечения линий (в том числе и те, что по краям) были вершинами хотя бы одного закрашенного треугольничка?

Прислать комментарий     Решение

Задача 65602

Темы:   [ Тела вращения ]
[ Разные задачи на разрезания ]
Сложность: 3+
Классы: 5,6,7

По поверхности планеты, имеющей форму бублика, проползли, оставляя за собой следы, две улитки: одна по внешнему экватору, а другая по винтовой линии (см. рис.). На сколько частей разделили поверхность планеты следы улиток? (Достаточно написать ответ.)

Прислать комментарий     Решение

Задача 97831

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Разные задачи на разрезания ]
Сложность: 3+
Классы: 7,8,9

Автор: Фомин С.В.

Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков 2×2 (режут по линиям).
Доказать, что из оставшейся части листа можно вырезать ещё хотя бы один такой же квадратик.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .