ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В параллелограмме АВСD точка Е – середина стороны AD, точка F – основание перпендикуляра, опущенного из вершины В на прямую СЕ.
Найдите площадь треугольника ABF, если  АВ = а,  ∠ВАF = α.

   Решение

Задачи

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 2247]      



Задача 65230

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Правильный (равносторонний) треугольник ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?

Прислать комментарий     Решение

Задача 65360

Темы:   [ Трапеции (прочее) ]
[ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9,10,11

Пусть ABCD – трапеция, в которой углы A и B прямые,  AB = AD,  CD = BC + AD,  BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.

Прислать комментарий     Решение

Задача 65426

Темы:   [ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Внутри параллелограмма ABCD выбрана точка Р так, что  ∠АРВ + ∠СРD = 180°.  Докажите, что  ∠РВC = ∠РDC.

Прислать комментарий     Решение

Задача 65475

Темы:   [ Параллелограммы (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 10,11

В параллелограмме АВСD точка Е – середина стороны AD, точка F – основание перпендикуляра, опущенного из вершины В на прямую СЕ.
Найдите площадь треугольника ABF, если  АВ = а,  ∠ВАF = α.

Прислать комментарий     Решение

Задача 65478

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Вписанный угол равен половине центрального ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Около единичного квадрата ABCD описана окружность, на которой выбрана точка М.
Какое наибольшее значение может принимать произведение MA·MB·MC·MD?

Прислать комментарий     Решение

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .