ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли такое натуральное n, что  

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 965]      



Задача 65611

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 9,10,11

Существует ли такое натуральное n, что  

Прислать комментарий     Решение

Задача 65704

Темы:   [ Исследование квадратного трехчлена ]
[ Рациональные и иррациональные числа ]
Сложность: 3+
Классы: 10,11

Автор: Жуков Г.

Квадратный трёхчлен  f(x) = ax² + bx + c,  не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена  f(x) быть рациональным?

Прислать комментарий     Решение

Задача 65726

Темы:   [ Исследование квадратного трехчлена ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 8,9,10

Автор: Храбров А.

Существуют ли такие целые числа a и b, что
  а) уравнение  x² + ax + b = 0  не имеет корней, а уравнение  [x²] + ax + b = 0 имеет?
  б) уравнение  x² + 2ax + b = 0  не имеет корней, а уравнение  [x²] + 2ax + b = 0  имеет?
Прислать комментарий     Решение


Задача 65761

Темы:   [ Целочисленные и целозначные многочлены ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число. На  2n + 1  карточках написано по ненулевому целому числу; сумма всех чисел также ненулевая. Требуется этими карточками заменить звёздочки в выражении  *x2n + *x2n–1 + ... *x + *  так, чтобы полученный многочлен не имел целых корней. Всегда ли это можно сделать?

Прислать комментарий     Решение

Задача 65854

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любая натуральная степень многочлена  P(x) = x4 + x³ – 3x² + x + 2  имеет хотя бы один отрицательный коэффициент.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 965]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .