Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 965]
Решите уравнение (x + 1)² + (x + 2)² + ... + (x + 10)² = (x + 1 + 2 + ... + 10)².
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы $a(x) + b(x)$, где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами,
а) ровно одним способом?
б) ровно двумя способами?
Способы, отличающиеся лишь порядком слагаемых, считаются одинаковыми.
|
|
Сложность: 3+ Классы: 9,10,11
|
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
Докажите, что p(x) можно представить в виде многочлена от (x – a/2)².
|
|
Сложность: 3+ Классы: 8,9,10
|
В каком из выражений: (1 – x² + x³)1000, (1 + x² – x³)1000 после раскрытия скобок и приведения подобных членов больший коэффициент при x20?
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что многочлен вида x200y200 + 1 нельзя представить в виде произведения многочленов от одного только x и одного только y.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 965]