ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N.

   Решение

Задачи

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 488]      



Задача 109852

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Раскраски ]
[ Индукция в геометрии ]
[ Системы точек ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Деление с остатком ]
Сложность: 4
Классы: 8,9,10

Петя раскрашивает 2006 точек, расположенных на окружности, в 17 цветов. Затем Коля проводит хорды с концами в отмеченных точках так, чтобы концы любой хорды были одноцветны и хорды не имели общих точек (в том числе и общих концов). При этом Коля хочет провести как можно больше хорд, а Петя старается ему помешать. Какое наибольшее количество хорд заведомо сможет провести Коля?

Прислать комментарий     Решение

Задача 65124

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

Прислать комментарий     Решение

Задача 98388

Темы:   [ Процессы и операции ]
[ Рекуррентные соотношения (прочее) ]
[ Полуинварианты ]
[ Свойства модуля. Неравенство треугольника ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

За круглым столом сидят десять человек, перед каждым – несколько орехов. Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.

Прислать комментарий     Решение

Задача 65677

Темы:   [ Турниры и турнирные таблицы ]
[ Вспомогательная раскраска (прочее) ]
[ Ориентированные графы ]
[ Деревья ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

В однокруговом хоккейном турнире принимало участие 2016 команд. По регламенту турнира за победу даётся 3 очка, за поражение 0 очков, а в случае ничьей назначается дополнительное время, победитель которого получает 2 очка, а проигравший – 1 очко. По окончании турнира Остапу Бендеру сообщили количество очков, набранных каждой командой, на основании чего он сделал вывод, что не менее N матчей закончились дополнительным временем. Найдите наибольшее возможное значение N.

Прислать комментарий     Решение

Задача 110178

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Полуинварианты ]
[ Процессы и операции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 6-
Классы: 9,10,11

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Прислать комментарий     Решение

Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .