ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел являться степенью двойки?

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1221]      



Задача 65113

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа  n, n + 1, ..., n + 8.  При каких n он сможет это сделать?

Прислать комментарий     Решение

Задача 65695

Темы:   [ Разбиения на пары и группы; биекции ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел являться степенью двойки?

Прислать комментарий     Решение

Задача 65700

Темы:   [ Разбиения на пары и группы; биекции ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 9,10,11

Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Может ли сумма наименьшего общего кратного всех красных чисел и наименьшего общего кратного всех синих чисел оканчиваться на 2016?

Прислать комментарий     Решение

Задача 65833

Темы:   [ Разбиения на пары и группы; биекции ]
[ Принцип крайнего (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)

Прислать комментарий     Решение

Задача 65839

Темы:   [ Процессы и операции ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10

Автор: Вялый М.Н.

Аня, Боря и Витя сидят по кругу за столом и едят орехи. Сначала все орехи у Ани. Она делит их поровну между Борей и Витей, а остаток (если он есть) съедает. Затем все повторяется: каждый следующий (по часовой стрелке) делит имеющиеся у него орехи поровну между соседями, а остаток съедает. Орехов много (больше 3). Докажите, что:
  a) хотя бы один орех будет съеден;
  б) все орехи не будут съедены.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .