ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют). |
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1221]
Правильный треугольник со стороной 3 разбит на девять треугольных клеток, как показано на рисунке. В этих клетках изначально записаны нули. За один ход можно выбрать два числа, находящиеся в соседних по стороне клетках, и либо прибавить к обоим по единице, либо вычесть из обоих по единице. Петя хочет сделать несколько ходов так, чтобы после этого в клетках оказались записаны в некотором порядке последовательные натуральные числа n, n + 1, ..., n + 8. При каких n он сможет это сделать?
Петя выбрал несколько последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
Петя выбрал 10 последовательных натуральных чисел и каждое записал либо красным, либо синим карандашом (оба цвета присутствуют).
На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)
a) хотя бы один орех будет съеден; б) все орехи не будут съедены.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|