Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 51]
Дано
n прямых. Постройте
n-угольник, для которого
эти прямые являются: а) серединными перпендикулярами
к сторонам; б) биссектрисами внешних или внутренних углов
при вершинах.
Впишите в данную окружность
n-угольник, одна
из сторон которого проходит через данную точку, а остальные
стороны параллельны данным прямым.
|
|
Сложность: 3+ Классы: 10,11
|
Функция f(x) определена для всех действительных чисел, причем для любого x выполняются равенства f(x + 2) = f(2 – x) и f(x + 7) = f(7 – x).
Докажите, что f(x) – периодическая функция.
[Обмены квартир]
|
|
Сложность: 3+ Классы: 8,9,10
|
В некотором городе разрешаются только парные обмены квартир (если две семьи
обмениваются квартирами, то в тот же день они не имеют права участвовать в
другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).
|
|
Сложность: 4- Классы: 8,9,10,11
|
В треугольнике ABC c углом A, равным 45°, проведена медиана AM. Прямая b симметрична прямой AM относительно высоты BB1, а прямая c симметрична прямой AM относительно высоты CC1. Прямые b и c пересеклись в точке X. Докажите, что AX = BC.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 51]