Страница:
<< 94 95 96 97 98 99
100 >> [Всего задач: 499]
[Теорема Паскаля]
|
|
Сложность: 5- Классы: 9,10,11
|
В окружность S вписан шестиугольник ABCDEF. Докажите, что
точки пересечения прямых AB и DE, BC и EF, CD и FA
лежат на одной прямой.
|
|
Сложность: 5 Классы: 9,10,11
|
В остроугольном неравнобедренном треугольнике ABC проведены высоты AA1, BB1 и CC1. Пусть ω – его описанная окружность, точка M – середина стороны BC, P – вторая точка пересечения описанной окружности треугольника AB1C1 и ω, T – точка пересечения касательных к ω, проведённых в точках B и C, S – точка пересечения AT и ω. Докажите, что P, A1, S и середина отрезка MT лежат на одной прямой.
|
|
Сложность: 5 Классы: 10,11
|
Дан неравнобедренный треугольник ABC. Пусть N – середина дуги BAC его описанной окружности, а M – середина стороны BC. Обозначим через I1 и I2 центры вписанных окружностей треугольников ABM и ACM соответственно. Докажите, что точки I1, I2, A,
N лежат на одной окружности.
Дан правильный треугольник
ABC . Через вершину
B
проводится произвольная прямая
l , а через точки
A
и
C проводятся прямые, перпендикулярные прямой
l ,
пересекающие её в точках
D и
E . Затем, если точки
D и
E различны, строятся правильные треугольники
DEP и
DET , лежащие по разные стороны от прямой
l .
Найдите геометрическое место точек
P и
T .
|
|
Сложность: 6- Классы: 9,10,11
|
Даны две окружности, касающиеся внутренним образом в
точке
N . Хорды
BA и
BC внешней окружности касаются
внутренней в точках
K и
M соответственно. Пусть
Q
и
P – середины дуг
AB и
BC , не содержащих точку
N . Окружности, описанные около треугольников
BQK и
BPM , пересекаются в точке
B1
. Докажите, что
BPB1
Q – параллелограмм.
Страница:
<< 94 95 96 97 98 99
100 >> [Всего задач: 499]