ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 292]      



Задача 65075

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Биссектрисы углов A и C трапеции ABCD пересекаются в точке P, а биссектрисы углов B и D – в точке Q, отличной от P.
Докажите, что если отрезок PQ параллелен основанию AD, то трапеция равнобокая.

Прислать комментарий     Решение

Задача 65703

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства касательной ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 9,10,11

Автор: Обухов Б.

Внутри равнобокой трапеции ABCD с основаниями BC и AD расположена окружность ω с центром I, касающаяся отрезков AB, CD и DA. Описанная окружность треугольника BIC вторично пересекает сторону AB в точке E. Докажите, что прямая CE касается окружности ω.
Прислать комментарий     Решение


Задача 66148

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10

Дана равнобокая трапеция ABCD с основаниями BC и AD. Окружность ω проходит через вершины B и C и вторично пересекает сторону AB и диагональ BD в точках X и Y соответственно. Касательная, проведённая к окружности ω в точке C, пересекает луч AD в точке Z. Докажите, что точки X, Y и Z лежат на одной прямой.

Прислать комментарий     Решение

Задача 66235

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Биссектриса угла (ГМТ) ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 9,10

В равнобедренной трапеции ABCD с основаниями BC и AD диагонали AC и BD перпендикулярны. Из точки D опущен перпендикуляр DE на сторону AB, а из точки C – перпендикуляр CF на прямую DE. Докажите, что  ∠DBF = ½ ∠FCD.

Прислать комментарий     Решение

Задача 66965

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10

Автор: Дидин М.

Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$.
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .