Страница:
<< 17 18 19 20 21
22 23 >> [Всего задач: 115]
|
|
Сложность: 5- Классы: 9,10,11
|
Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что AP = BQ.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан выпуклый четырёхугольник ABCD. Обозначим через IA, IB, IC и ID центры вписанных окружностей ωA, ωB, ωC и ωD треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что ∠BIAA + ∠ICIAID = 180°. Докажите, что ∠BIBA + ∠ICIBID = 180°.
|
|
Сложность: 5 Классы: 9,10,11
|
Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
|
|
Сложность: 3 Классы: 10,11
|
Две окружности касаются внешним образом. A – точка касания их общей внешней касательной с одной из окружностей, B – точка той же окружности, диаметрально противоположная точке A. Докажите, что длина касательной, проведённой из точки B ко второй окружности, равна диаметру первой окружности.
|
|
Сложность: 4 Классы: 10,11
|
В треугольнике ABC на стороне AB отметили точку D. Пусть ω1 и Ω1, ω2 и Ω2 – соответственно вписанные и вневписанные (касающиеся AB во внутренней точке) окружности треугольников ACD и BCD. Докажите, что общие внешние касательные к ω1 и ω2, Ω1 и Ω2 пересекаются на прямой AB.
Страница:
<< 17 18 19 20 21
22 23 >> [Всего задач: 115]