Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

В треугольнике ABC точка K на стороне AB и точка M на стороне AC расположены так, что  AK : KB = 3 : 2,  а  AM : NC = 4 : 5.
Найдите отношение, в котором прямая, проходящая через точку K параллельно стороне BC, делит отрезок BM.

Вниз   Решение


У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)

ВверхВниз   Решение


Когда встречаются два жителя Цветочного города, один отдает другому монету в 10 копеек, а тот ему - 2 монеты по 5 копеек. Могло ли случиться так, что за день каждый из 1990 жителей города отдал ровно 10 монет?

ВверхВниз   Решение


У треугольника ABC угол C — тупой. Докажите, что если точка X лежит на стороне AC, а точка Y — на стороне BC, то XY < AB.

ВверхВниз   Решение


Через точку на стороне треугольника проведена прямая, параллельная другой стороне, до пересечения с третьей стороной треугольника. Через полученную точку проведена прямая, параллельная первой стороне треугольника и т.д. Докажите, что
  а) если исходная точка сопадает с серединой стороны треугольника, то четвёртая точка, полученная таким способом, совпадёт с исходной;
  б) если исходная точка отлична от середины стороны треугольника, то седьмая точка, полученная таким способом, совпадёт с исходной.

ВверхВниз   Решение


На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что  AK² = LK·KM.

ВверхВниз   Решение


Около окружности описан n-угольник  A1...Anl — произвольная касательная к окружности, не проходящая через вершины n-угольника. Пусть ai — расстояние от вершины Ai до прямой lbi — расстояние от точки касания стороны  AiAi + 1 с окружностью до прямой l. Докажите, что:
а) величина  b1...bn/(a1...an) не зависит от выбора прямой l;
б) величина  a1a3...a2m - 1/(a2a4...a2m) не зависит от выбора прямой l, если n = 2m.

ВверхВниз   Решение


В 2n-угольнике (n нечетно)  A1...A2n, описанном около окружности с центром O, диагонали A1An + 1, A2An + 2,..., An - 1A2n - 1 проходят через точку O. Докажите, что и диагональ AnA2n проходит через точку O.

ВверхВниз   Решение


В квадрате 2000*2000 расставлены числа так, что в любом квадрате 2*2 сумма левого верхнего числа и правого нижнего числа равна сумме левого нижнего числа и правого верхнего числа. Докажите, что сумма чисел, стоящих в левом верхнем и правом нижнем углах квадрата 2000*2000, равна сумме чисел, стоящих в двух других углах.

ВверхВниз   Решение


На белых и чёрных клетках доски 10×10 стоит по одинаковому количеству ладей так, что никакие две ладьи друг друга не бьют.
Докажите, что на эту доску можно поставить еще одну ладью так, чтобы она не била никакую из уже стоящих.

ВверхВниз   Решение


У Царя Гвидона было 5 сыновей. Среди его потомков 100 имели каждый ровно по 3 сына, а остальные умерли бездетными.
Сколько потомков было у царя Гвидона?

ВверхВниз   Решение


Первый член бесконечной арифметической прогрессии из натуральных чисел равен 1.
Докажите, что среди её членов можно найти 2015 последовательных членов геометрической прогрессии.

ВверхВниз   Решение


а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку?

б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°.

(Торт и коробку считайте плоскими фигурами.)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 111325

Темы:   [ Наглядная геометрия ]
[ Перенос помогает решить задачу ]
[ Покрытия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?

Прислать комментарий     Решение

Задача 65577

Темы:   [ Наглядная геометрия ]
[ Симметрия помогает решить задачу ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Клетчатый бумажный прямоугольник 10×12 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Сколько частей могло получиться после того, как этот квадратик разрезали по отрезку, соединяющему
  a) середины двух его противоположных сторон;
  б) середины двух его соседних сторон?

Прислать комментарий     Решение

Задача 66066

Темы:   [ Наглядная геометрия ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 6,7

У Вики есть четыре фигурки, у Алины есть квадрат, а у Полины есть квадрат другого размера. Объединившись, Алина и Вика могут сложить квадрат, используя все свои пять фигурок. Может ли оказаться так, что Полина и Вика также смогут сложить квадрат, используя все свои пять фигурок? (Квадраты складываются без просветов и наложений.)

Прислать комментарий     Решение

Задача 66185

Темы:   [ Наглядная геометрия ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 7,8,9,10

а) Торт имеет форму треугольника, в котором один угол в 3 раза больше другого. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку?

б) Та же задача для торта в форме тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов.
(Торт и коробку считайте плоскими фигурами.)

Прислать комментарий     Решение

Задача 66190

Темы:   [ Наглядная геометрия ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

а) Торт имеет форму тупоугольного треугольника, в котором тупой угол в 2 раза больше одного из острых углов. Коробка для торта имеет форму того же треугольника, но симметрична ему относительно некоторой прямой. Как разрезать торт на две части, которые можно будет (не переворачивая) уложить в эту коробку?

б) Та же задача для торта, имеющего форму треугольника с углами 20°, 30°, 130°.

(Торт и коробку считайте плоскими фигурами.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .