ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки. Даны пять точек некоторой окружности. С помощью
одной линейки постройте шестую точку этой окружности.
Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны 180°/n.
В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.
На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.
Сходимость итерационного процесса.
Предположим, что функция f (x) отображает отрезок [a;b] в
себя, и на этом отрезке
| f'(x)|
| xn + 1 - xn|
В равнобедренном треугольнике боковая сторона равна b. Расстояние между основаниями биссектрис треугольника, проведённых к боковым сторонам, равно m. Найдите основание треугольника. В параллели 7-х классов 100 учеников, некоторые из которых дружат друг с другом. 1 сентября они организовали несколько клубов, каждый из которых основали три ученика (у каждого клуба свои). Дальше каждый день в каждый клуб вступали те ученики, кто дружил хотя бы с тремя членами клуба. К 19 февраля в клубе «Гепарды» состояли все ученики параллели. Могло ли получиться так, что в клубе «Черепахи» в этот же день состояло ровно 50 учеников? Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника? В треугольнике ABC проведена биссектриса CQ. Около треугольника BCQ описана окружность радиуса 1/3, центр которой лежит на отрезке AC. Восстановите а) треугольник; б) пятиугольник по серединам его сторон. Прямая, проведённая через вершину C треугольника ABC параллельно его биссектрисе BD, пересекает продолжение стороны AB в точке M. Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]
Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$
Многочлен $P(x)=x^3+ax^2+bx+c$ имеет три различных действительных корня, наибольший из которых равен сумме двух других. Докажите, что $c>ab$.
При каких a многочлен P(x) = a³x5 + (1 – a)x4 + (1 + a³)x² + (1 – 3a)x – a³ делится на x – 1?
В каком из двух уравнений сумма квадратов корней больше
Какими должны быть числа a и b, чтобы выполнялось равенство x³ + px + q = x³ – a³ – b³ – 3abx?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 50]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке