Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дан угол с вершиной A. От точки A отложен на стороне отрезок AB; из точки B проведена прямая, параллельная второй стороне данного угла; на этой прямой отложен внутри угла отрезок BD, равный BA. Докажите, что прямая AD делит данный угол пополам.

Вниз   Решение


Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H.
Найдите площадь треугольника ABC, если  AH = 5,  а высота AD равна 8.

ВверхВниз   Решение


В выпуклом пятиугольнике равны все стороны, а также равны четыре из пяти диагоналей.
Следует ли из этого условия, что пятиугольник – правильный?

ВверхВниз   Решение


По кругу выписаны числа 1, 2, 3, ..., 10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшее из вычисленных чисел. Какое наибольшее число могло быть написано на доске?

ВверхВниз   Решение


Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)?

ВверхВниз   Решение


Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.

ВверхВниз   Решение


У Гриши есть 5000 рублей. В магазине продаются шоколадные зайцы по цене 45 рублей за штуку. Чтобы отнести зайцев домой, Грише придется купить ещё несколько сумок по 30 рублей за штуку. В одну сумку помещается не более 30 шоколадных зайцев. Гриша купил наибольшее возможное количество зайцев и достаточное количество сумок, чтобы донести в них всех зайцев. Сколько денег осталось у Гриши?

ВверхВниз   Решение


У реки живет племя Мумбо-Юмбо. Однажды со срочным известием в соседнее племя одновременно отправились молодой воин Мумбо и мудрый шаман Юмбо. Мумбо побежал со скоростью 11 км/ч к ближайшему хранилищу плотов и затем поплыл на плоту в соседнее племя. А Юмбо, не торопясь, со скоростью 6 км/ч, пошел к другому хранилищу плотов и поплыл в соседнее племя оттуда. В итоге Юмбо приплыл раньше чем Мумбо. Река прямолинейна, плоты плывут со скоростью течения. Эта скорость всюду одинакова и выражается целым числом км/ч, не меньшим 6. Каково наибольшее возможное её значение?

ВверхВниз   Решение


Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 64]      



Задача 110474

Темы:   [ Площадь и ортогональная проекция ]
[ Сфера, вписанная в двугранный угол ]
[ Касающиеся сферы ]
[ Формула Герона ]
Сложность: 4
Классы: 10,11

Три шара радиусов 1, 3 и 4 расположены так, что каждый из них касается двух других шаров и двух данных плоскостей. Найдите расстояние между точками касания первого из этих шаров с плоскостями.
Прислать комментарий     Решение


Задача 110741

Темы:   [ Площадь и ортогональная проекция ]
[ Тетраэдр (прочее) ]
Сложность: 4
Классы: 10,11

Теорема косинусов для тетраэдра.}Квадрат площади каждой грани тетраэдра равен сумме квадратов площадей трёх остальных граней без удвоенных попарных произведений площадей этих граней на косинусы двугранных углов между ними, т.е.

S20 = S21+S22+S23- 2S1S2 cos α12- 2S1S3 cos α13- 2S2S3 cos α23.

Прислать комментарий     Решение

Задача 116322

Темы:   [ Площадь и ортогональная проекция ]
[ Площадь сечения ]
[ Теорема о трех перпендикулярах ]
Сложность: 4
Классы: 10,11

Сторона основания ABC пирамиды TABC равна 4, боковое ребро TA перпендикулярно плоскости основания. Найдите площадь сечения пирамиды плоскостью, проходящей через середины рёбер AC и BT параллельно медиане BD грани BCT , если известно, что расстояние от вершины T до этой плоскости равно .
Прислать комментарий     Решение


Задача 78302

Темы:   [ Площадь и ортогональная проекция ]
[ Площадь и объем (задачи на экстремум) ]
[ Прямоугольные параллелепипеды ]
Сложность: 4+
Классы: 11

Как надо расположить в пространстве прямоугольный параллелепипед, чтобы площадь его проекции на горизонтальную плоскость была наибольшей?
Прислать комментарий     Решение


Задача 66612

Темы:   [ Площадь и ортогональная проекция ]
[ Достроение тетраэдра до параллелепипеда ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 5
Классы: 9,10,11

Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .