|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На сферическом Солнце обнаружено конечное число круглых пятен, каждое из которых занимает меньше половины поверхности Солнца. Эти пятна предполагаются замкнутыми (т.е. граница пятна принадлежит ему) и не пересекаются между собой. Доказать, что на Солнце найдутся две диаметрально противоположные точки, не покрытые пятнами. Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 92]
В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN.
В выпуклом пятиугольнике равны все стороны, а также равны четыре из пяти диагоналей.
Пятиугольник ABCDE вписан в окружность, причём ∠B + ∠E = ∠C + ∠D. Докажите, что ∠CAD < π/3 < ∠A.
Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?
Дан выпуклый пятиугольник $ABCDE$, в котором AE || CD и $AB = BC$. Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что BK || AE.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 92] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|