Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.

Вниз   Решение


Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость.

ВверхВниз   Решение


Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.

ВверхВниз   Решение


На сторонах BC и CD параллелограмма ABCD взяты точки K и L так, что BK : KC = CL : LD. Докажите, что центр масс треугольника AKL лежит на диагонали BD.

ВверхВниз   Решение


Решить уравнение  x8 + 4x4 + x² + 1 = 0.

ВверхВниз   Решение


Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

ВверхВниз   Решение


Центрально симметричная фигура на клетчатой бумаге состоит из n "уголков" и k прямоугольников размером 1×4, изображенных на рис. Докажите, что n четно.


ВверхВниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу вписанной окружности равно k. Найдите углы треугольника.

ВверхВниз   Решение


Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
  а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
  б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.

ВверхВниз   Решение


Автор: Agarwal P.

Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.

ВверхВниз   Решение


Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.

ВверхВниз   Решение


Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 54717

 [Теорема Стюарта]
Темы:   [ Теорема Стюарта ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Точка D расположена на стороне BC треугольника ABC. Докажите, что AB2 . DC + AC2 . BD - AD2 . BC = BC . DC . BD.

Прислать комментарий     Решение


Задача 66782

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Стюарта ]
[ Теорема Карно ]
Сложность: 5
Классы: 9,10,11

Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$.
Прислать комментарий     Решение


Задача 115862

Темы:   [ Вписанные и описанные окружности ]
[ Центральное проектирование ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
[ Теоремы Чевы и Менелая ]
[ Теорема Стюарта ]
Сложность: 4
Классы: 8,9,10,11

В треугольнике ABC  M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда   GM || AB.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .