ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$. Решение |
Страница: 1 [Всего задач: 3]
Точка D расположена на стороне BC треугольника ABC. Докажите, что AB2 . DC + AC2 . BD - AD2 . BC = BC . DC . BD.
В треугольнике ABC M – точка пересечения медиан, I – центр вписанной окружности, A1 и B1 – точки касания этой окружности со сторонами BC и AC, G – точка пересечения прямых AA1 и BB1. Докажите, что угол CGI прямой тогда и только тогда, когда GM || AB.
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|