ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]      



Задача 53093

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9

Равнобедренная трапеция с основаниями AD и BC ( AD > BC ) описана около окружности, которая касается стороны CD в точке M . Отрезок AM пересекает окружность в точке N . Найдите отношение AD к BC , если AN:NM = k .
Прислать комментарий     Решение


Задача 53107

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9

Окружность, вписанная в треугольник ABC , делит медиану BM на три равные части. Найдите отношение BC:CA:AB .
Прислать комментарий     Решение


Задача 66783

Темы:   [ Вписанные и описанные окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 9,10,11

Автор: Mahdi Etesami Fard

Окружность $\omega$, вписанная в треугольник $ABC$, касается сторон $BC$, $CA$ и $AB$ в точках $D$, $E$ и $F$ соответственно. Перпендикуляр из $E$ на $DF$ пересекает прямую $BC$ в точке $X$, а перпендикуляр из $F$ на $DE$ пересекает $BC$ в точке $Y$. Отрезок $AD$ пересекает $\omega$ во второй раз в точке $Z$. Докажите, что описанная окружность треугольника $XYZ$ касается $\omega$.
Прислать комментарий     Решение


Задача 108691

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

В равнобедренную трапецию ABCD ( AB=CD ) вписана окружность. Пусть M – точка касания окружности со стороной CD , K – точка пересечения окружности с отрезком AM , L – точка пересечения окружности с отрезком BM . Вычислите величину + .
Прислать комментарий     Решение


Задача 110907

Темы:   [ Теорема косинусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 4
Классы: 8,9

Окружность касается стороны AD четырёхугольника ABCD в точке D , а стороны BC – в её середине M . Диагональ AC пересекает окружность в точках K и L , ( AK<AL ). Известно, что AK=5 , KL=4 , LC=1 . Лучи AD и BC пересекаются в точке S , причём ASB = 120o . Найдите радиус окружности и площадь четырёхугольника ABCD .
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .