ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Tran Quang Hung

Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 115]      



Задача 66313

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 9,10,11

Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что  AP = BQ.

Прислать комментарий     Решение

Задача 66169

Темы:   [ Вписанные и описанные окружности ]
[ Углы между биссектрисами ]
[ Общая касательная к двум окружностям ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Метрические соотношения (прочее) ]
Сложность: 5
Классы: 9,10,11

Дан выпуклый четырёхугольник ABCD. Обозначим через IA, IB, IC и ID центры вписанных окружностей ωA, ωB, ωC и ωD треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что  ∠BIAA + ∠ICIAID = 180°.  Докажите, что  ∠BIBA + ∠ICIBID = 180°.

Прислать комментарий     Решение

Задача 66815

Темы:   [ ГМТ - прямая или отрезок ]
[ Вневписанные окружности ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $P$ – произвольная точка на стороне $BC$ треугольника $ABC$, $K$ – центр вписанной окружности треугольника $PAB$, а $F$ – точка касания вписанной окружности треугольника $PAC$ со стороной $BC$. Точка $G$ на $CK$ такова, что $FG\parallel PK$. Найдите геометрическое место точек $G$.
Прислать комментарий     Решение


Задача 116496

Темы:   [ Касающиеся окружности ]
[ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
[ Общая касательная к двум окружностям ]
[ Вписанный угол, опирающийся на диаметр ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 10,11

Две окружности касаются внешним образом. A – точка касания их общей внешней касательной с одной из окружностей, B – точка той же окружности, диаметрально противоположная точке A. Докажите, что длина касательной, проведённой из точки B ко второй окружности, равна диаметру первой окружности.

Прислать комментарий     Решение

Задача 64922

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Теоремы Чевы и Менелая ]
[ Общая касательная к двум окружностям ]
[ Три точки, лежащие на одной прямой ]
Сложность: 4
Классы: 10,11

В треугольнике ABC на стороне AB отметили точку D. Пусть ω1 и Ω1, ω2 и Ω2 – соответственно вписанные и вневписанные (касающиеся AB во внутренней точке) окружности треугольников ACD и BCD. Докажите, что общие внешние касательные к ω1 и ω2, Ω1 и Ω2 пересекаются на прямой AB.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 115]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .