ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Рябов П.

Две окружности пересекаются в точках $P$ и $R$. Через точку $P$ проведены прямые $l_1$, $l_2$. Прямая $l_1$ вторично пересекает окружности в точках $A_1$ и $B_1$. Касательные в этих точках к описанной окружности треугольника $A_1RB_1$ пересекаются в точке $C_1$. Прямая $C_1R$ пересекает $A_1B_1$ в точке $D_1$. Аналогично определены точки $A_2$, $B_2$, $C_2$, $D_2$. Докажите, что окружности $D_1D_2P$ и $C_1C_2R$ касаются.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 207]      



Задача 65706

Темы:   [ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Угол между касательной и хордой ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 10,11

В треугольнике ABC проведена биссектриса BL. На отрезке CL выбрана точка M. Касательная в точке B к описанной окружности Ω треугольника ABC пересекает луч CA в точке P. Касательные в точках B и M к описанной окружности Γ треугольника BLM, пересекаются в точке Q. Докажите, что прямые PQ и BL параллельны.

Прислать комментарий     Решение

Задача 66156

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 9,10,11

Остроугольный равнобедренный треугольник ABC  (AB = AC)  вписан в окружность с центром O. Лучи BO и CO пересекают стороны AC и AB в точках B' и C' соответственно. Через точку C' проведена прямая l, параллельная прямой AC. Докажите, что прямая l касается описанной окружности ω треугольника B'OC.

Прислать комментарий     Решение

Задача 66233

Темы:   [ Ортоцентр и ортотреугольник ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ ГМТ - прямая или отрезок ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10

В остроугольном треугольнике ABC  AA', BB' и CC' – высоты. Точки Ca, Cb симметричны C' относительно AA' и BB'. Аналогично определены точки Ab, Ac, Bc, Ba. Докажите, что прямые AbBa, BcCb и CaAc параллельны.

Прислать комментарий     Решение

Задача 66920

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Касающиеся окружности ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Рябов П.

Две окружности пересекаются в точках $P$ и $R$. Через точку $P$ проведены прямые $l_1$, $l_2$. Прямая $l_1$ вторично пересекает окружности в точках $A_1$ и $B_1$. Касательные в этих точках к описанной окружности треугольника $A_1RB_1$ пересекаются в точке $C_1$. Прямая $C_1R$ пересекает $A_1B_1$ в точке $D_1$. Аналогично определены точки $A_2$, $B_2$, $C_2$, $D_2$. Докажите, что окружности $D_1D_2P$ и $C_1C_2R$ касаются.
Прислать комментарий     Решение


Задача 108636

Темы:   [ Две пары подобных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

В четырёхугольнике ABCD на сторонах BC и AD взяты точки R и T соответственно. Отрезки BT и AR пересекаются в точке P, отрезки CT и DR – в точке S. Оказалось, что PRST – параллелограмм. Докажите, что  AB || CD.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .