ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Угол, изготовленный из прозрачного материала,
двигают так, что две непересекающиеся окружности касаются
его сторон внутренним образом. Докажите, что на нем
можно отметить точку, которая описывает дугу окружности.
На сторонах BC, CA и AB треугольника ABC
взяты точки A1, B1 и C1 так, что отрезки AA1, BB1 и CC1
пересекаются в одной точке. Прямые A1B1 и A1C1 пересекают
прямую, проходящую через вершину A параллельно стороне BC, в
точках C2 и B2 соответственно. Докажите, что AB2 = AC2.
Окружности с центрами O1 и O2 касаются внешним образом в точке
K. Некоторая прямая касается этих окружностей в различных точках A
и B и пересекает их общую касательную, проходящую через точку K, в
точке M. Докажите, что
Четырёхугольник ABCD описан около окружности с центром O.
Докажите, что
В треугольнике ABC известно, что AB < BC < AC, а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A. На сторонах треугольника ABC внешним образом
построены треугольники ABC', AB'C и A'BC, причем сумма
углов при вершинах A', B' и C' кратна
180o. Докажите,
что описанные окружности построенных треугольников пересекаются в
одной точке.
Докажите, что корень a многочлена P(x) имеет кратность больше 1 тогда и только тогда, когда P(a) = 0 и P'(a) = 0. Назовем почти выпуклым несамопересекающийся многоугольник, у которого ровно один внутренний угол больше $180^\circ$. На плоскости даны $1000000$ точек, никакие три из которых не лежат на одной прямой. Может ли оказаться, что существует ровно десять различных почти выпуклых $1000000$-угольников с вершинами в этих точках? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
Докажите, что любой n-угольник можно разрезать
на треугольники непересекающимися диагоналями.
Докажите, что сумма внутренних углов любого
n-угольника равна
(n - 2) 180o.
Докажите, что количество треугольников, на которые непересекающиеся
диагонали разбивают n-угольник, равно n - 2.
Многоугольник разрезан непересекающимися диагоналями на
треугольники. Докажите, что по крайней мере две из этих диагоналей
отсекают от него треугольники.
Назовем почти выпуклым несамопересекающийся многоугольник, у которого ровно один внутренний угол больше $180^\circ$. На плоскости даны $1000000$ точек, никакие три из которых не лежат на одной прямой. Может ли оказаться, что существует ровно десять различных почти выпуклых $1000000$-угольников с вершинами в этих точках?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке