ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой.
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, лежащей между точками B и C,
причём
BD : BC =
Докажите, что при
x≠πn (n– целое) sin x и cos x рациональны
тогда и только тогда, когда число
tg Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток). Сторона BC параллелограмма ABCD вдвое больше стороны AB.
Биссектрисы углов A и B пересекают прямую CD в точках M и N, причём MN = 12. Докажите, что для любых положительных чисел а1, ..., an справедливо неравенство На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой. У царя Гиерона есть 11 металлических слитков, неразличимых на вид; царь знает, что их веса (в некотором порядке) равны 1, 2, ..., 11 кг. Ещё у него есть мешок, который порвётся, если в него положить больше 11 кг. Архимед узнал веса всех слитков и хочет доказать Гиерону, что первый слиток имеет а) В треугольниках ABC и A'B'C' равны стороны AC и A'C', углы при вершинах B и B' и биссектрисы углов B и B'. Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть только на одну чашку весов?
В треугольнике $ABC$ точка $M$ – середина дуги $BAC$ описанной окружности $\Omega$, $I$ – центр вписанной окружности, $N$ – вторая точка пересечения прямой $AI$ с $\Omega$, $E$ – точка касания стороны $BC$ с соответствующей вневписанной окружностью, $Q$ – вторая точка пересечения окружности $IMN$ с прямой, проходящей через $I$ и параллельной $BC$. Докажите, что прямые $AE$ и $NQ$ пересекаются на $\Omega$. |
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 207]
В треугольнике $ABC$ точка $M$ – середина дуги $BAC$ описанной окружности $\Omega$, $I$ – центр вписанной окружности, $N$ – вторая точка пересечения прямой $AI$ с $\Omega$, $E$ – точка касания стороны $BC$ с соответствующей вневписанной окружностью, $Q$ – вторая точка пересечения окружности $IMN$ с прямой, проходящей через $I$ и параллельной $BC$. Докажите, что прямые $AE$ и $NQ$ пересекаются на $\Omega$.
В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.
Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?
Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.
Точка M расположена на стороне AB параллелограмма ABCD, причём BM : MA = 1 : 2. Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.
Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 207]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке