Страница: 1 [Всего задач: 5]
|
|
Сложность: 3+ Классы: 10,11
|
Прямой круговой конус с радиусом основания R и высотой положили боком на плоскость и покатили так, что его вершина осталась неподвижна. Сколько оборотов сделает его основание до момента, когда конус вернется в исходное положение?
|
|
Сложность: 4 Классы: 10,11
|
У прямого кругового конуса длина образующей равна 5, а диаметр
равен 8.
Найдите наибольшую площадь треугольного сечения, которая может получиться при
пересечении конуса плоскостью.
|
|
Сложность: 3+ Классы: 10,11
|
Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.
|
|
Сложность: 5- Классы: 10,11
|
Окружность
S и точка
O лежат в одной плоскости, причём
O находится вне
окружности. Построим произвольный шар, проходящий через окружность
S, и
опишем конус с вершиной в точке
O и касающийся шара. Найти геометрическое
место центров окружностей, по которым конусы касаются шаров.
|
|
Сложность: 5+ Классы: 10,11
|
В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что
$$
R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2).
$$
Страница: 1 [Всего задач: 5]