ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Может ли треугольник быть разверткой четырехугольной пирамиды?

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 538]      



Задача 64821

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильная пирамида ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Правильный тетраэдр обладает таким свойством: для каждых двух его вершин найдётся третья вершина, образующая с этими двумя правильный треугольник. Существуют ли другие многогранники, обладающие этим свойством?

Прислать комментарий     Решение

Задача 111206

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Средняя линия треугольника ]
[ Площадь и ортогональная проекция ]
[ Симметрия относительно плоскости ]
[ Площадь трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 10,11

Через середину ребра AC правильной треугольной пирамиды SABC (S – вершина) проведены плоскости α и β, каждая из которых образует угол 30° с плоскостью ABC. Найдите площади сечений пирамиды SABC плоскостями α и β, если эти сечения имеют общую сторону длины 1, лежащую в грани ABC, а плоскость α перпендикулярна ребру SA.

Прислать комментарий     Решение

Задача 64887

Темы:   [ Четырехугольная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Три точки, лежащие на одной прямой ]
[ Проективные преобразования пространства ]
[ Касательные к сферам ]
Сложность: 4
Классы: 11

Автор: Нилов Ф.

Дана описанная четырёхугольная пирамида ABCDS. Противоположные стороны основания пересекаются в точках P и Q, причём точки A и B лежат на отрезках PD и PC. Вписанная сфера касается боковых граней ABS и BCS в точках K и L. Докажите, что если прямые PK и QL пересекаются, то точка касания сферы и основания лежит на отрезке BD.

Прислать комментарий     Решение

Задача 65382

Темы:   [ Четырехугольная пирамида ]
[ Сфера, описанная около пирамиды ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 10,11

Четырёхугольная пирамида SABCD вписана в сферу. Из вершин A, B, C, D опущены перпендикуляры AA1, BB1, CC1, DD1 на прямые SC, SD, SA, SB соответственно. Оказалось, что точки S, A1, B1, C1, D1 различны и лежат на одной сфере. Докажите, что точки A1, B1, C1, D1 лежат в одной плоскости.

Прислать комментарий     Решение

Задача 66980

Темы:   [ Сечения, развертки и остовы (прочее) ]
[ Четырехугольная пирамида ]
Сложность: 4
Классы: 10,11

Может ли треугольник быть разверткой четырехугольной пирамиды?
Прислать комментарий     Решение


Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 538]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .