Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
  а) каждая карта наверняка оказалась не там, где была вначале?
  б) рядом со свободным местом наверняка не было туза пик?

Вниз   Решение


99 прямых разбивают плоскость на n частей. Найдите все возможные значения n, меньшие 199.

ВверхВниз   Решение


Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

ВверхВниз   Решение


Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.

ВверхВниз   Решение


Докажите, что количество способов разрезать квадрат $999 \times 999$ на уголки из трёх клеток делится на $2^7$.

ВверхВниз   Решение


Высота ромба, проведённая из вершины тупого угла, делит его сторону на отрезки длины a и b. Найдите диагонали ромба.

ВверхВниз   Решение


Прямой круговой конус с радиусом основания R и высотой     положили боком на плоскость и покатили так, что его вершина осталась неподвижна. Сколько оборотов сделает его основание до момента, когда конус вернется в исходное положение?

ВверхВниз   Решение


На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

ВверхВниз   Решение


Известно, что Z1 + ... + Zn = 0, где Zk — комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна 120o.

ВверхВниз   Решение


Автор: Кноп К.А.

На стороне правильного восьмиугольника во внешнюю сторону построен квадрат. В восьмиугольнике проведены две диагонали, пересекающиеся в точке $B$ (см. рисунок). Найдите величину угла $ABC$. (Многоугольник называется правильным, если все его стороны равны и все его углы равны.)

ВверхВниз   Решение


Существует ли прямоугольник, который можно разрезать на 100 прямоугольников, которые все ему подобны, но среди которых нет двух одинаковых?

ВверхВниз   Решение


В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 3.
Найдите площадь прямоугольника.

ВверхВниз   Решение


Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 500]      



Задача 66645

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку.
Прислать комментарий     Решение


Задача 66742

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что любой треугольник можно разрезать на 2019 четырёхугольников, каждый из которых одновременно вписанный и описанный.

Прислать комментарий     Решение

Задача 66769

Темы:   [ Вписанные четырехугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9,10,11

В треугольнике $ABC$ $AA_1$, $CC_1$ – высоты, $P$ – произвольная точка на стороне $BC$. Точка $Q$ на прямой $AB$ такова, что $QP=PC_1$, а точка $R$ на прямой $AC$ такова, что $RP=CP$. Докажите, что четырехугольник $QA_1RA$ вписанный.
Прислать комментарий     Решение


Задача 67090

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства касательной ]
[ Угол между касательной и хордой ]
Сложность: 3
Классы: 8,9,10

Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$.
Прислать комментарий     Решение


Задача 67358

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Даны окружность $\omega$ с центром $O$ и точка $P$ внутри нее. Пусть $X$ – произвольная точка $\omega$, прямая $XP$ и окружность $XOP$ пересекают $\omega$ во второй раз в точках $X_1$, $X_2$ соответственно. Докажите, что все прямые $X_1X_2$ параллельны друг другу.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 500]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .