Страница:
<< 123 124 125 126
127 128 129 >> [Всего задач: 1275]
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть O – одна из точек пересечения окружностей ω1 и ω2. Окружность ω с центром O пересекает ω1 в точках A и B, а ω2 – в точках C и D. Пусть X – точка пересечения прямых AC и BD. Докажите, что все такие точки X лежат на одной прямой.
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$.
Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников
$A_0IC_0$ и $ABC$ касаются.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ высоты $AH_A$, $BH_B$ и
$CH_C$ пересекаются в точке $H$. Через точки, в которых окружность
радиуса $HH_A$ с центром $H$ пересекает отрезки $BH$ и $CH$, проведена
прямая $\ell_A$. Аналогично проведены прямые $\ell_B$ и
$\ell_C$. Докажите, что точка пересечения высот треугольника,
образованного прямыми $\ell_A$, $\ell_B$, $\ell_C$, совпадает с центром
окружности, вписанной в треугольник $ABC$.
Страница:
<< 123 124 125 126
127 128 129 >> [Всего задач: 1275]