|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В выпуклом 1950-угольнике проведены все диагонали. Они разбивают его на многоугольники. Возьмём среди них многоугольник с самым большим числом сторон. Какое наибольшее число сторон он может иметь? На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник. Основанием прямой призмы является равнобедренная трапеция ABCD с основаниями AD=15 , BC=3 и боковой стороной AB=10 ; высота призмы равна 9. Плоскость P пересекает боковые рёбра AA1 , BB1 , CC1 и DD1 в точках K , L , M и N соответственно, причём AK=3 . Площади фигур BLMC , BLKA , CMND и DNKA образуют в указанном порядке арифметическую прогрессию. В каком отношении плоскость P делит объём призмы? Существует ли треугольник, градусная мера каждого угла которого выражается простым числом? Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд. Рёбра параллелепипеда равны a , b и c . Рёбра, равные a и b , взаимно перпендикулярны, а ребро, равное c , образует с каждым из них угол 60o . Найдите объём параллелепипеда. В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70]
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.
Углы треугольника ABC удовлетворяют соотношению sin²A + sin²B + sin²C = 1.
Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.
В остроугольном треугольнике ABC высоты пересекаются в точке H, а медианы — в точке O. Биссектриса угла A проходит через середину отрезка OH. Найдите площадь треугольника ABC, если BC = 2, а разность углов B и C равна 30o.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 70] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|