ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На плоскости даны n векторов, длина каждого из которых б) Докажите аналогичное утверждение для n векторов с в) Можно ли заменить |
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 416]
Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
Клетчатая фигура Ф обладает таким свойством: при любом заполнении клеток прямоугольника m×n числами, сумма которых положительна, фигуру Ф можно так расположить в прямоугольнике, чтобы сумма чисел в клетках прямоугольника, накрытых фигурой Ф, была положительна (фигуру Ф можно поворачивать). Докажите, что данный прямоугольник может быть покрыт фигурой Ф в несколько слоев.
б) Докажите аналогичное утверждение для n векторов с в) Можно ли заменить
Докажите неравенства: б) при n > 1; в) при n > 6.
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 416] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|