ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 829]      



Задача 67087

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9,10,11

Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника.
Прислать комментарий     Решение


Задача 67136

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Замощения костями домино и плитками ]
Сложность: 3
Классы: 6,7,8,9

Автор: Gabor Damasdi

В маленьком доме в Португалии пол выложен из четырёхугольных плиток одинаковой формы и размера (см. рис.). Найдите все четыре угла плитки. Ответ дайте в градусах.

Прислать комментарий     Решение


Задача 76512

Темы:   [ Параллелограммы (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Сторона AD параллелограмма ABCD разделена на n равных частей. Первая точка деления P соединена с вершиной B.
Доказать, что прямая BP отсекает на диагонали AC часть AQ, которая равна 1/n+1 части диагонали:  AQ = AC/n+1.

Прислать комментарий     Решение

Задача 77969

Темы:   [ Построения с помощью прямого угла ]
[ Перпендикулярные прямые ]
Сложность: 3
Классы: 8,9

Разделить отрезок пополам с помощью угольника. (С помощью угольника можно проводить прямые и восстанавливать перпендикуляры, опускать перпендикуляры нельзя.)

Прислать комментарий     Решение

Задача 86932

Темы:   [ Тетраэдр и пирамида ]
[ Три прямые, пересекающиеся в одной точке ]
[ Средняя линия треугольника ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

Дана треугольная призма ABCA1B1C1. Точки M, N и K – середины рёбер BC, AC и AB соответственно.
Докажите, что прямые MA1, NB1 и KC1 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .