Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 275]
|
|
Сложность: 3+ Классы: 8,9,10
|
Какие значения может принимать наибольший общий делитель натуральных чисел m и n, если известно, что при увеличении числа m на 6 он увеличивается в 9 раз?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны три натуральных числа. Каждое из них делится на наибольший общий делитель остальных двух. Наименьшее общее кратное каждых двух из данных чисел делится на оставшееся третье. Обязательно ли все три числа равны?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Алёша задумал натуральные числа $a, b, c$, а потом решил найти такие натуральные $x, y, z$, что $a$ = НОК($x, y), b$ = НОК($x, z), c$ = НОК($y, z$). Оказалось, что такие $x, y, z$ существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа $a$ и $b$.
Докажите, что Боря может восстановить $c$.
Докажите, что каково бы ни было целое число n, среди чисел n, n + 1, n + 2, n + 3, n + 4 есть хотя бы одно число взаимно простое с остальными четырьмя из этих чисел.
Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего
общего кратного равен наибольшему общему делителю самих чисел.
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 275]