Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 17 задач
Версия для печати
Убрать все задачи

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.

Вниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

ВверхВниз   Решение


Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.

ВверхВниз   Решение


Постройте треугольник по высоте, основанию и медиане, проведённой к этому основанию.

ВверхВниз   Решение


В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
Докажите, что длина гипотенузы – нечётное число, а длины катетов имеют разную чётность.

ВверхВниз   Решение


Диагонали ромба ABCD пересекаются в точке O. Докажите, что точки пересечения биссектрис каждого из треугольников ABO, BCO, CDO и DAO являются вершинами квадрата.

ВверхВниз   Решение


Продолжите последовательность: 2, 6, 12, 20, 30, …

ВверхВниз   Решение


В трапеции ABCD даны основания  AD = 16  и  BC = 9.  На продолжении BC выбрана такая точка M, что  CM = 3,2.
В каком отношении прямая AM делит площадь трапеции ABCD?

ВверхВниз   Решение


Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?

ВверхВниз   Решение


Дана линейка с делениями через 1 см. Проведите какую-нибудь прямую, перпендикулярную данной прямой.

ВверхВниз   Решение


Найти все такие двузначные числа , что при умножении на некоторое целое число получается число, предпоследняя цифра которого – 5.

ВверхВниз   Решение


Можно ли n раз рассадить  2n + 1  человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если  а)  n = 5;  б)  n = 10?

ВверхВниз   Решение


Восстановите  а) треугольник;  б) пятиугольник по серединам его сторон.

ВверхВниз   Решение


Окружность $\omega_{1}$ проходит через центр $O$ окружности $\omega_{2}$ и пересекает ее в точках $A$ и $B$. Окружность $\omega_{3}$ с центром в точке $A$ и радиусом $AB$ пересекает повторно окружности $\omega_{1}$ и $\omega_{2}$ в точках $C$ и $D$ (отличных от $B$). Докажите, что точки $C$, $O$, $D$ лежат на одной прямой.

ВверхВниз   Решение


На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что  AK = BL = a,
KM = LM = b
  и угол KML прямой. Докажите, что  a = b.

ВверхВниз   Решение


Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  n + 3,  n + 4  есть хотя бы одно число взаимно простое с остальными четырьмя из этих чисел.

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 276]      



Задача 65996

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Какие значения может принимать наибольший общий делитель натуральных чисел m и n, если известно, что при увеличении числа m на 6 он увеличивается в 9 раз?

Прислать комментарий     Решение

Задача 66694

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Даны три натуральных числа. Каждое из них делится на наибольший общий делитель остальных двух. Наименьшее общее кратное каждых двух из данных чисел делится на оставшееся третье. Обязательно ли все три числа равны?

Прислать комментарий     Решение

Задача 66859

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

Алёша задумал натуральные числа $a, b, c$, а потом решил найти такие натуральные $x, y, z$, что  $a$ = НОК($x, y), b$ = НОК($x, z), c$ = НОК($y, z$).  Оказалось, что такие $x, y, z$ существуют и определены однозначно. Алёша рассказал об этом Боре и сообщил ему только числа $a$ и $b$. Докажите, что Боря может восстановить $c$.

Прислать комментарий     Решение

Задача 76538

Темы:   [ НОД и НОК. Взаимная простота ]
[ Деление с остатком ]
Сложность: 3+
Классы: 8,9

Докажите, что каково бы ни было целое число n, среди чисел n,  n + 1,  n + 2,  n + 3,  n + 4  есть хотя бы одно число взаимно простое с остальными четырьмя из этих чисел.

Прислать комментарий     Решение

Задача 77978

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего общего кратного равен наибольшему общему делителю самих чисел.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 276]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .