Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

На боковых сторонах AB и AC равнобедренного треугольника ABC расположены точки N и M соответственно, причём  AN = NM = MB = BC.
Найдите углы треугольника ABC.

Вниз   Решение


Рассмотрим все остроугольные треугольники с заданными стороной a и углом α.
Чему равен максимум суммы квадратов длин сторон b и c?

ВверхВниз   Решение


Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

ВверхВниз   Решение


Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что
  а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
  б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).

ВверхВниз   Решение


Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.

ВверхВниз   Решение


Докажите, что две различные окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.

ВверхВниз   Решение


Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

ВверхВниз   Решение


Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)

Вверх   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 772]      



Задача 55592

Темы:   [ Окружность, вписанная в угол ]
[ Окружности (построения) ]
Сложность: 4+
Классы: 8,9

Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.

Прислать комментарий     Решение


Задача 66683

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4+
Классы: 9,10,11

Автор: Креков Д.

В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
Прислать комментарий     Решение


Задача 64476

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Четыре точки, лежащие на одной окружности ]
[ Стереографическая проекция ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 10,11

Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC.

Прислать комментарий     Решение

Задача 77895

Тема:   [ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 8,9

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)
Прислать комментарий     Решение


Задача 56662

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 5
Классы: 7,8

К двум окружностям различного радиуса проведены общие внешние касательные AB и CD. Докажите, что четырехугольник ABCD описанный тогда и только тогда, когда окружности касаются.
Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .