ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи 100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд. Подчеркнуто, во-первых, каждое положительное число, во-вторых, каждое число, сумма которого со следующим положительна, и, в-третьих, каждое число, сумма которого с двумя следующими положительна. Может ли сумма всех подчеркнутых чисел оказаться отрицательной? Равной нулю? Решение |
Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 1221]
Шашка бьёт шашку соперника, стоящую на соседнем поле, если следующее за ним поле свободно. При этом своя шашка перемещается на это свободное поле, а побитая шашка соперника снимается с доски. Бить обязательно: если есть возможность бить, делать вместо этого простой ход какой-либо шашкой нельзя. Если шашка, побившая шашку соперника, может сразу побить следующую его шашку, она должна продолжать бить тем же ходом. Кто — Белые или Чёрные — победят в этой игре вне зависимости от игры партнёра? Рассмотрите случаи: а) У игроков по одной шашке, поле длиной N>2 клеток; б) У игроков по две шашки, поле длиной N>4 клеток; в) У игроков по три шашки, поле длиной N>6 клеток; г) Дополнительное задание. Можно подумать, что численное преимущество решает исход игры. Придумайте и нарисуйте, однако, позицию, где у Белых меньше шашек, чем у Чёрных, и тем не менее, Белые начинают (с простого хода) и выигрывают.
Страница: << 148 149 150 151 152 153 154 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|