Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Сформулируйте и докажите признаки делимости на 2n и 5n.

Вниз   Решение


В треугольнике ABC даны углы B и C. Биссектриса угла A пересекает сторону BC в точке D, а описанную окружность треугольника ABC – в точке E.
Найдите отношение AE : DE.

ВверхВниз   Решение


Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6 частей?

ВверхВниз   Решение


Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

ВверхВниз   Решение


Середина одной из диагоналей выпуклого четырёхугольника соединена с концами другой диагонали. Докажите, что полученная ломаная делит четырёхугольник на две равновеликие части.

ВверхВниз   Решение


Известно, что  cos α° = 1/3.  Является ли α рациональным числом?

ВверхВниз   Решение


В некоторой стране 100 аэродромов, причём все попарные расстояния между ними различны. С каждого аэродрома поднимается самолет и летит на ближайший к нему аэродром.
Докажите, что ни на один аэродром не может прилететь больше пяти самолетов.

ВверхВниз   Решение


а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

ВверхВниз   Решение


Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?

ВверхВниз   Решение


Можно ли расположить на плоскости 1000 отрезков так, чтобы каждый отрезок обоими своими концами упирался строго внутрь других отрезков?

ВверхВниз   Решение


Озеро имеет форму невыпуклого n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого m-угольника, где mn.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



Задача 66894

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пятиугольники ]
[ Выпуклые многоугольники ]
[ Невыпуклые многоугольники ]
[ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

а) Выпуклый пятиугольник разбили непересекающимися диагоналями на три треугольника. Могут ли точки пересечения медиан этих треугольников лежать на одной прямой?

б) Тот же вопрос для невыпуклого пятиугольника.

Прислать комментарий     Решение

Задача 66825

Темы:   [ Логика и теория множеств (прочее) ]
[ Четность и нечетность ]
[ Углы между биссектрисами ]
[ Невыпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.

Прислать комментарий     Решение

Задача 78821

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ ГМТ с ненулевой площадью ]
[ Невыпуклые многоугольники ]
Сложность: 5+
Классы: 8,9,10,11

Озеро имеет форму невыпуклого n-угольника. Докажите, что множество точек озера, из которых видны все его берега, либо пусто, либо заполняет внутренность выпуклого m-угольника, где mn.
Прислать комментарий     Решение


Задача 79308

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Полуинварианты ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Невыпуклые многоугольники ]
Сложность: 5+
Классы: 9,10,11

Можно ли какой-нибудь выпуклый многоугольник разрезать на конечное число невыпуклых четырёхугольников?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .