Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На боковых сторонах AB и AC равнобедренного треугольника ABC расположены точки N и M соответственно, причём  AN = NM = MB = BC.
Найдите углы треугольника ABC.

Вниз   Решение


Рассмотрим все остроугольные треугольники с заданными стороной a и углом α.
Чему равен максимум суммы квадратов длин сторон b и c?

ВверхВниз   Решение


Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?

ВверхВниз   Решение


Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.

ВверхВниз   Решение


Автор: Фольклор

Доказать, что
  а) из всех треугольников с данной стороной и данным периметром наибольшую площадь имеет равнобедренный треугольник (у которого данная сторона является основанием);
  б) из всех треугольников с данной стороной и данной площадью наименьший периметр имеет равнобедренный треугольник (у которого данная сторона является основанием).

ВверхВниз   Решение


Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.

ВверхВниз   Решение


Докажите, что две различные окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.

ВверхВниз   Решение


Дан угол в 30o. Постройте окружность радиуса 2,5, касающуюся одной стороны этого угла и имеющую центр на другой его стороне. Найдите расстояние от центра окружности до вершины угла.

ВверхВниз   Решение


Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)

ВверхВниз   Решение


В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета?

ВверхВниз   Решение


В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок.

ВверхВниз   Решение


Сумма тангенсов углов величиной 1°, 5°, 9°, 13°, ..., 173°, 177° равна 45. Докажите это.

ВверхВниз   Решение


Доказать, что при любых  x >   и  y >   выполняется неравенство  x4x³y + x²y² – xy³ + y4 > x² + y².

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 590]      



Задача 78811

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 9

Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а сумма всех чисел из набора равна 100.
Какое наименьшее количество чисел может быть в наборе?

Прислать комментарий     Решение

Задача 79430

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9

Доказать, что при любых  x >   и  y >   выполняется неравенство  x4x³y + x²y² – xy³ + y4 > x² + y².

Прислать комментарий     Решение

Задача 79435

Темы:   [ Алгебраические неравенства (прочее) ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10

Доказать, что при любой расстановке знаков "+" и "−" у нечётных степеней x выполнено неравенство
x2n ± x2n–1 + x2n–2 ± x2n–3 + ... + x4 ± x³ + x² ± x + 1 > ½  (x – произвольное действительное число, а n – натуральное).

Прислать комментарий     Решение

Задача 79452

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9

Сумма пяти неотрицательных чисел равна единице.
Докажите, что их можно расставить по кругу так, что сумма всех пяти попарных произведений соседних чисел будет не больше ⅕.

Прислать комментарий     Решение

Задача 79473

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

Числа a1, a2, ..., a1985 представляют собой переставленные в некотором порядке числа 1, 2, ..., 1985. Каждое число ak умножается на его номер k, а затем среди полученных 1985 произведений выбирается наибольшее. Доказать, что оно не меньше, чем 993².

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .