|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В остроугольном треугольнике ABC провели высоты AA1 и BB1, которые пересекаются в точке O. Затем провели высоту A1A2 треугольника OBA1 и высоту B1B2 треугольника OAB1. Докажите, что отрезок A2B2 параллелен стороне AB. Четырехугольник ABCD описан около окружности с центром O. В треугольнике AOB проведены высоты AA1 и BB1, а в треугольнике COD — высоты CC1 и DD1. Докажите, что точки A1, B1, C1 и D1 лежат на одной прямой. В тетраэдре ABCD проведены медианы AM и DN граней ACD и ADB . На этих медианах взяты соответственно точки E и F , причём EF || BC . Найдите отношение EF:BC . |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 697]
Сторона основания ABCD правильной пирамиды SABCD равна
1) объём пирамиды CMSK; 2) угол между прямыми CM и SK; 3) расстояние между прямыми CM и SK.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 697] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|