ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
С помощью циркуля и линейки постройте четырёхугольник по диагоналям, углу между ними и двум каким-нибудь сторонам.
Все рёбра пирамиды ABCD равны между собой. Нарисуйте изображение пирамиды ABCD , полученное в результате ортогонального проектирования на плоскость, параллельную AB и CD . Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли На прямой l в пространстве последовательно расположены точки A , B и C , причём AB = 10 и BC = 22 . Найдите расстояние между прямыми l и m , если если расстояния от точек A , B и C до прямой m равны 12, 13 и 20 соответственно. В море плавает предмет, имеющий форму выпуклого многогранника. Пусть
( На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD
взяты точки K, L, M и N соответственно, причем
AK : KB = DM : MC = Точка X лежит внутри треугольника ABC. Прямые,
проходящие через точку X параллельно AC и BC, пересекают
сторону AB в точках K и L соответственно. Докажите, что
барицентрические координаты точки X равны
(BL : AK : LK).
В таблицу записано девять чисел: a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её
столбцов: a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.
Докажите, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то его объём не меньше ⅓ h1h2h3. Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней.
Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — диаметр окружности. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
Внутри выпуклого четырехугольника с суммой длин
диагоналей d расположен выпуклый четырехугольник с суммой длин
диагоналей d'. Докажите, что d' < 2d.
Ортогональные проекции треугольника ABC на две взаимно
перпендикулярные плоскости являются правильными треугольниками
со сторонами 1. Найдите периметр треугольника ABC , если
известно, что AB = |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 185]
Прямоугольная проекция треугольной пирамиды на некоторую плоскость имеет максимально возможную площадь.
Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1.
Ортогональные проекции треугольника ABC на две взаимно
перпендикулярные плоскости являются правильными треугольниками
со сторонами 1. Найдите периметр треугольника ABC , если
известно, что AB =
На прямой l в пространстве последовательно расположены точки A , B и C , причём AB = 18 и BC = 14 . Найдите расстояние между прямыми l и m , если расстояния от точек A , B и C до прямой m равны 12, 15 и 20 соответственно.
На прямой l в пространстве последовательно расположены точки A , B и C , причём AB = 10 и BC = 22 . Найдите расстояние между прямыми l и m , если если расстояния от точек A , B и C до прямой m равны 12, 13 и 20 соответственно.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 185]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке