Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Найдите на прямой AB точку M, для которой сумма радиусов описанных окружностей треугольников ACM и BCM была бы наименьшей.

Вниз   Решение


Дан угол XAY. Концы B и C отрезков BO и CO длиной 1 перемещаются по лучам AX и AY. Постройте четырехугольник ABOC наибольшей площади.

ВверхВниз   Решение


Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

ВверхВниз   Решение


Дан угол XAY и точка O внутри его. Проведите через точку O прямую, отсекающую от данного угла треугольник наименьшей площади.

ВверхВниз   Решение


Доказать, что  n³ + 5n  делится на 6 при любом целом n.

ВверхВниз   Решение


Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?

ВверхВниз   Решение


Среди всех решений системы
    x² + y² = 4,
    z² + t² = 9,
    xt + yz = 6
выберите те, для которых величина  x + z  принимает наибольшее значение.

ВверхВниз   Решение


Дан равнобедренный треугольник ABC с вершиной A. Длина прыжка кузнечика равна основанию BC. Известно, что начиная движение из точки C, кузнечик за 22 прыжка оказался в точке A, приземляясь после каждого прыжка на боковой стороне треугольника ABC и чередуя стороны при каждом прыжке, кроме последнего. Найдите углы треугольника ABC, если известно, что с каждым прыжком кузнечик приближался к точке A.

ВверхВниз   Решение


На стороне AD квадрата ABCD во внутреннюю сторону построен тупоугольный равнобедренный треугольник AED. Вокруг него описана окружность и проведён её диаметр AF, на стороне CD выбрана точка G так, что  CG = DF.  Докажите, что угол BGE меньше половины угла AED.

ВверхВниз   Решение


Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна  ½ na²,  где a – сторона n-угольника.

ВверхВниз   Решение


На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

ВверхВниз   Решение


В прямоугольном треугольнике ABC с катетами AB = 3 и BC = 4 через середины сторон AB и AC проведена окружность, касающаяся катета BC. Найдите длину отрезка гипотенузы AC, который лежит внутри этой окружности.

ВверхВниз   Решение


Отрезок, соединяющий вершину A треугольника ABC с центром Q вневписанной окружности, касающейся стороны BC, пересекает описанную окружность треугольника ABC в точке D. Докажите, что треугольник BDQ – равнобедренный.

ВверхВниз   Решение



В треугольной пирамиде ABCD известно, что AB = 8, CD = 12, расстояние между прямыми AB и CD равно 6, а объем пирамиды равен 48. Найдите угол между прямыми AB и CD.

ВверхВниз   Решение


Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Найдите расстояние от точки D до плоскости ABC .

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 217]      



Задача 87170

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте параметрические уравнения прямой, проходящей через точку M(-2;0;3) перпендикулярно плоскости, проходящей через точки A(-3;0;1) , P(-1;2;5) и Q(3;-4;1) .
Прислать комментарий     Решение


Задача 87184

Темы:   [ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Найдите расстояние от точки D до плоскости ABC .
Прислать комментарий     Решение


Задача 87186

Темы:   [ Метод координат в пространстве ]
[ Углы между прямыми и плоскостями ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки A(1;0;1) , B(-2;2;1) , C(2;0;3) и D(0;4;-2) . Найдите угол между прямой AB и плоскостью BCD .
Прислать комментарий     Решение


Задача 87191

Темы:   [ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите расстояние от точки L до плоскости MNK .
Прислать комментарий     Решение


Задача 87470

Темы:   [ Куб ]
[ Свойства сечений ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

Дан куб ABCDA1B1C1D1 с ребром a . Пусть M – середина ребра D1C1 . Найдите периметр треугольника A1DM , а также расстояние от вершины D1 до плоскости, проходящей через вершины этого треугольника.
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .